如圖,已知直線l:x=my+1過橢圓的右焦點(diǎn)F,拋物線:的焦點(diǎn)為橢圓C的上頂點(diǎn),且直線l交橢圓C于A、B兩點(diǎn),點(diǎn)A、F、B在直線g:x=4上的射影依次為點(diǎn)D、K、E.(1)橢圓C的方程;(2)直線l交y軸于點(diǎn)M,且,當(dāng)m變化時,探求λ12的值是否為定值?若是,求出λ12的值,否則,說明理由;(3)接AE、BD,試證明當(dāng)m變化時,直線AE與BD相交于定點(diǎn)

 

【答案】

(1)

(2) 當(dāng)m變化時,λ12的值為定值;

(3)當(dāng)m變化時,AE與BD相交于定點(diǎn)

【解析】

試題分析:(1)知橢圓右焦點(diǎn)F(1,0),∴c=1,

拋物線的焦點(diǎn)坐標(biāo),∴∴b2=3

∴a2=b2+c2=4∴橢圓C的方程  4分

(2)知m≠0,且l與y軸交于,

設(shè)直線l交橢圓于A(x1,y1),B(x2,y2

-  5分

∴△=(6m)2+36(3m2+4)=144(m2+1)>0

  6分

又由

同理-  7分

所以,當(dāng)m變化時,λ12的值為定值;  9分

(3):由(2)A(x1,y1),B(x2,y2),∴D(4,y1),E(4,y2

方法1)∵   10分

當(dāng)時,=

=  12分

∴點(diǎn)在直線lAE上,  13分

同理可證,點(diǎn)也在直線lBD上;

∴當(dāng)m變化時,AE與BD相交于定點(diǎn)  14分

方法2)∵  10分

-  11分

=  12分

∴kEN=kAN∴A、N、E三點(diǎn)共線,

同理可得B、N、D也三點(diǎn)共線;  13分

∴當(dāng)m變化時,AE與BD相交于定點(diǎn).  14分

考點(diǎn):橢圓的方程,直線與橢圓的位置關(guān)系

點(diǎn)評:解決的關(guān)鍵是對于橢圓的幾何性質(zhì)的表示,以及聯(lián)立方程組的思想結(jié)合韋達(dá)定理來求解,屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線l:x=my+1過橢圓C:
x2
a2
+
y2
b2
=1
的右焦點(diǎn)F,拋物線:x2=4
3
y
的焦點(diǎn)為橢圓C的上頂點(diǎn),且直線l交橢圓C于A、B兩點(diǎn),點(diǎn)A、F、B在直線g:x=4上的射影依次為點(diǎn)D、K、E.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l交y軸于點(diǎn)M,且
MA
=λ1
AF
,
MB
=λ2
BF
,當(dāng)m變化時,探求λ12的值是否為定值?若是,求出λ12的值,否則,說明理由;
(Ⅲ)連接AE、BD,試證明當(dāng)m變化時,直線AE與BD相交于定點(diǎn)N(
5
2
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直線l:x=my+4(m∈R)與x軸交于點(diǎn)P,交拋物線y2=2ax(a>0)于A,B兩點(diǎn),坐標(biāo)原點(diǎn)O是PQ的中點(diǎn),記直線AQ,BQ的斜率分別為k1,k2
(Ⅰ)若P為拋物線的焦點(diǎn),求a的值,并確定拋物線的準(zhǔn)線與以AB為直徑的圓的位置關(guān)系.
(Ⅱ)試證明:k1+k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直線L:x=my+1過橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)F,且交橢圓C于A,B兩點(diǎn),點(diǎn)A,F(xiàn),B在直線G:x=a2上的射影依次為點(diǎn)D,K,E.
(1)若拋物線x2=4
3
y的焦點(diǎn)為橢圓C的上頂點(diǎn),求橢圓C的方程;
(2)連接AE,BD,證明:當(dāng)m變化時,直線AE、BD相交于一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•樂山二模)如圖,已知直線L:x=my+1過橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)F,且交橢圓C于A、B兩點(diǎn),點(diǎn)A、F、B在直線G;x=a2上的射影依次為點(diǎn)D、K、E,若拋物線x2=4
3
y的焦點(diǎn)為橢圓C的頂點(diǎn).
(1)求橢圓C的方程;
(2)若直線L交y軸于點(diǎn)M,
MA
1
AF
MB
2
BF
,當(dāng)M變化時,求λ12的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直線L:x=my+1過橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點(diǎn)F,且交橢圓C于A、B兩點(diǎn),點(diǎn)A、B在直線G:x=a2上的射影依次為點(diǎn)D、E.
(1)若拋物線x2=4
3
y
的焦點(diǎn)為橢圓C 的上頂點(diǎn),求橢圓C的方程;(2)(理科生做)連接AE、BD,試探索當(dāng)m變化時,直線AE、BD是否相交于一定點(diǎn)N?若交于定點(diǎn)N,請求出N點(diǎn)的坐標(biāo),并給予證明;
否則說明理由.
(文科生做)若N(
a2+1
2
,0)
為x軸上一點(diǎn),求證:
AN
NE

查看答案和解析>>

同步練習(xí)冊答案