【題目】我國古代數(shù)學名著《九章算術》中有這樣一些數(shù)學用語,塹堵意指底面為直角三角形,且側(cè)棱垂直于底面的三棱柱,而陽馬指底面為矩形,且有一側(cè)棱垂直于底面的四棱錐.現(xiàn)有一如圖所示的塹堵,,若,當陽馬體積最大時,則塹堵的外接球體積為(

A.B.C.D.

【答案】B

【解析】

根據(jù)體積的最大值求得此時的長,判斷出球心的位置,求得的外接球的半徑,進而求得球的體積.

依題意可知平面.,則.,當且僅當時取得最大值.依題意可知是以為斜邊的直角三角形,所以塹堵外接球的直徑為,故半徑.所以外接球的體積為.

特別說明:由于平面是以為斜邊的直角三角形,所以塹堵外接球的直徑為為定值,即無論陽馬體積是否取得最大值,塹堵外接球保持不變,所以可以直接由直徑的長,計算出外接球的半徑,進而求得外接球的體積.

故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,有一個長方體形狀的敞口玻璃容器,底面是邊長為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖),且傾斜時底面的一條棱始終在桌面上(圖、均為容器的縱截面).

1)要使傾斜后容器內(nèi)的溶液不會溢出,角的最大值是多少?

2)現(xiàn)需要倒出不少于的溶液,當時,能實現(xiàn)要求嗎?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖甲,AD,BC是等腰梯形CDEF的兩條高,,點M是線段AE的中點,將該等腰梯形沿著兩條高AD,BC折疊成如圖乙所示的四棱錐P-ABCDE,F重合,記為點P.

1)求證:;

2)求點M到平面BDP距離h.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的定義域,并判斷的奇偶性;

2)如果當時,的值域是,求的值;

3)對任意的,是否存在,使得,若存在,求出;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓的右頂點為,過點作直線與圓相切,與橢圓交于另一點,與右準線交于點.設直線的斜率為.

1)用表示橢圓的離心率;

2)若,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列判斷正確的是(

A.若隨機變量服從正態(tài)分布,,則;

B.已知直線平面,直線平面,則“”是“”的充分不必要條件;

C.若隨機變量服從二項分布:,;

D.的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,國資委.黨委高度重視扶貧開發(fā)工作,堅決貫徹落實中央扶貧工作重大決策部署,在各個貧困縣全力推進定點扶貧各項工作,取得了積極成效,某貧困縣為了響應國家精準扶貧的號召,特地承包了一塊土地,已知土地的使用面積以及相應的管理時間的關系如下表所示:

土地使用面積(單位:畝)

1

2

3

4

5

管理時間(單位:月)

8

10

13

25

24

并調(diào)查了某村300名村民參與管理的意愿,得到的部分數(shù)據(jù)如下表所示:

愿意參與管理

不愿意參與管理

男性村民

150

50

女性村民

50

1)求出相關系數(shù)的大小,并判斷管理時間與土地使用面積是否線性相關?

2)是否有99.9%的把握認為村民的性別與參與管理的意愿具有相關性?

3)若以該村的村民的性別與參與管理意愿的情況估計貧困縣的情況,則從該貧困縣中任取3人,記取到不愿意參與管理的男性村民的人數(shù)為,求的分布列及數(shù)學期望。

參考公式:

其中。臨界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】松江有軌電車項目正在如火如荼的進行中,通車后將給市民出行帶來便利. 已知某條線路通車后,電車的發(fā)車時間間隔(單位:分鐘)滿足. 經(jīng)市場調(diào)研測算,電車載客量與發(fā)車時間間隔相關,當時電車為滿載狀態(tài),載客量為人,當時,載客量會減少,減少的人數(shù)與的平方成正比,且發(fā)車時間間隔為分鐘時的載客量為.記電車載客量為.

1)求的表達式,并求當發(fā)車時間間隔為分鐘時,電車的載客量;

2)若該線路每分鐘的凈收益為(元),問當發(fā)車時間間隔為多少時,該線路每分鐘的凈收益最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:直線關于圓的圓心距單位圓心到直線的距離與圓的半徑之比.

1)設圓,求過點的直線關于圓的圓心距單位的直線方程.

2)若圓軸相切于點,且直線關于圓的圓心距單位,求此圓的方程.

3)是否存在點,使過點的任意兩條互相垂直的直線分別關于相應兩圓的圓心距單位始終相等?若存在,求出相應的點坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案