(2012•安徽)設(shè)集合A={x|-3≤2x-1≤3},集合B為函數(shù)y=lg(x-1)的定義域,則A∩B=(  )
分析:由集合A={x|-3≤2x-1≤3}={x|-1≤x≤2},集合B為函數(shù)y=lg(x-1)的定義域,知B={x|x-1>0}={x|x>1},由此能求出A∩B.
解答:解:∵集合A={x|-3≤2x-1≤3}={x|-1≤x≤2},
集合B為函數(shù)y=lg(x-1)的定義域,
∴B={x|x-1>0}={x|x>1},
∴A∩B={x|1<x≤2},
故選D.
點(diǎn)評:本題考查對數(shù)函數(shù)的定義域的求法,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,注意交集的求法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽)設(shè)△ABC的內(nèi)角A、B、C所對邊的長分別為a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.
(Ⅰ)求角A的大;
(Ⅱ)若b=2,c=1,D為BC的中點(diǎn),求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽)設(shè)向量
a
=(1,2m),
b
=(m+1,1),
c
=(2,m),若(
a
+
c
)⊥
b
,則|
a
|=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽)設(shè)平面α與平面β相交于直線m,直線a在平面α內(nèi).直線b在平面β內(nèi),且b⊥m,則“α⊥β”是“a⊥b”的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽)設(shè)函數(shù)f(x)=
x2
+sinx的所有正的極小值點(diǎn)從小到大排成的數(shù)列為{xn}.
(Ⅰ)求數(shù)列{xn}.
(Ⅱ)設(shè){xn}的前n項(xiàng)和為Sn,求sinSn

查看答案和解析>>

同步練習(xí)冊答案