【題目】太極是中國(guó)古代的哲學(xué)術(shù)語(yǔ),意為派生萬(wàn)物的本源.太極圖是以黑白兩個(gè)魚(yú)形紋組成的圓形圖案,俗稱(chēng)陰陽(yáng)魚(yú).太極圖形象化地表達(dá)了陰陽(yáng)輪轉(zhuǎn),相反相成是萬(wàn)物生成變化根源的哲理.太極圖形展現(xiàn)了一種互相轉(zhuǎn)化,相對(duì)統(tǒng)一的形式美.按照太極圖的構(gòu)圖方法,在平面直角坐標(biāo)系中,圓的圖象分割為兩個(gè)對(duì)稱(chēng)的魚(yú)形圖案,圖中的兩個(gè)一黑一白的小圓通常稱(chēng)為“魚(yú)眼”,已知小圓的半徑均為,現(xiàn)在大圓內(nèi)隨機(jī)投放一點(diǎn),則此點(diǎn)投放到“魚(yú)眼”部分的概率為( )

A. B. C. D.

【答案】B

【解析】

先求得的周期,得出大圓的半徑,然后利用幾何概型求得“點(diǎn)投放到“魚(yú)眼”部分的概率”.

函數(shù)的最小正周期為,故大圓的直徑為,半徑為,故“點(diǎn)投放到“魚(yú)眼”部分的概率”為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】意大利人斐波那契在1202年寫(xiě)的《計(jì)算之書(shū)》中提出一個(gè)兔子繁殖問(wèn)題:假設(shè)一對(duì)剛出生的小兔一個(gè)月后能長(zhǎng)成大兔,再過(guò)一個(gè)月便能生下一對(duì)小兔,此后每個(gè)月生一對(duì)小兔,如此,設(shè)第n個(gè)月的兔子對(duì)數(shù)為,則,,,,….考查數(shù)列的規(guī)律,不難發(fā)現(xiàn),),我們稱(chēng)該數(shù)列為斐波那契數(shù)列.

1)若數(shù)列的前n項(xiàng)和為,滿(mǎn)足,,),試判斷數(shù)列是否構(gòu)成斐波那契數(shù)列,說(shuō)明理由;

2)若數(shù)列是斐波那契數(shù)列,且,求證:數(shù)列是等比數(shù)列;

3)若數(shù)列是斐波那契數(shù)列,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,有三根針和套在一根針上的個(gè)金屬片,按下列規(guī)則,把金屬片從一根針上全部移到另一根針上.

(1)每次只能移動(dòng)一個(gè)金屬片;

(2)在每次移動(dòng)過(guò)程中,每根針上較大的金屬片不能放在較小的金屬片上面.

個(gè)金屬片從1號(hào)針移到3號(hào)針最少需要移動(dòng)的次數(shù)記為,則__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解高二年級(jí)學(xué)生某次數(shù)學(xué)考試成績(jī)的分布情況,從該年級(jí)的1120名學(xué)生中隨機(jī)抽取了100名學(xué)生的數(shù)學(xué)成績(jī),發(fā)現(xiàn)都在內(nèi)現(xiàn)將這100名學(xué)生的成績(jī)按照,,,,分組后,得到的頻率分布直方圖如圖所示,則下列說(shuō)法正確的是  

A. 頻率分布直方圖中a的值為

B. 樣本數(shù)據(jù)低于130分的頻率為

C. 總體的中位數(shù)保留1位小數(shù)估計(jì)為

D. 總體分布在的頻數(shù)一定與總體分布在的頻數(shù)相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】第十三屆全國(guó)人大常委會(huì)第十一次會(huì)議審議的《固體廢物污染環(huán)境防治法(修訂草案)》中,提出推行生活垃圾分類(lèi)制度,這是生活垃圾分類(lèi)首次被納入國(guó)家立法中.為了解某城市居民的垃圾分類(lèi)意識(shí)與政府相關(guān)法規(guī)宣傳普及的關(guān)系,對(duì)某試點(diǎn)社區(qū)抽取戶(hù)居民進(jìn)行調(diào)查,得到如下的列聯(lián)表.

分類(lèi)意識(shí)強(qiáng)

分類(lèi)意識(shí)弱

合計(jì)

試點(diǎn)后

試點(diǎn)前

合計(jì)

已知在抽取的戶(hù)居民中隨機(jī)抽取戶(hù),抽到分類(lèi)意識(shí)強(qiáng)的概率為.

1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

2)判斷是否有的把握認(rèn)為居民分類(lèi)意識(shí)的強(qiáng)弱與政府宣傳普及工作有關(guān)?說(shuō)明你的理由;

參考公式:,其中.

下面的臨界值表僅供參考

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】氣象意義上,從春季進(jìn)入夏季的標(biāo)志為:“連續(xù)5天的日平均溫度不低于22℃”.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):

①甲地:5個(gè)數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;

②乙地:5個(gè)數(shù)據(jù)的中位數(shù)為27,總體均值為24;

③丙地:5個(gè)數(shù)據(jù)的中有一個(gè)數(shù)據(jù)是32,總體均值為26,總體方差為10.8;

則肯定進(jìn)入夏季的地區(qū)的有( )

A. ①②③ B. ①③ C. ②③ D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)為確定下一年度投入某種產(chǎn)品的生產(chǎn)所需的資金,需了解每投入2千萬(wàn)資金后,工人人數(shù)(單位:百人)對(duì)年產(chǎn)能(單位:千萬(wàn)元)的影響,對(duì)投入的人力和年產(chǎn)能的數(shù)據(jù)作了初步處理,得到散點(diǎn)圖和統(tǒng)計(jì)量表.

1)根據(jù)散點(diǎn)圖判斷:哪一個(gè)適宜作為年產(chǎn)能關(guān)于投入的人力的回歸方程類(lèi)型?并說(shuō)明理由?

2)根據(jù)(1)的判斷結(jié)果及相關(guān)的計(jì)算數(shù)據(jù),建立關(guān)于的回歸方程;

3)現(xiàn)該企業(yè)共有2000名生產(chǎn)工人,資金非常充足,為了使得年產(chǎn)能達(dá)到最大值,則下一年度共需投入多少資金(單位:千萬(wàn)元)?

附注:對(duì)于一組數(shù)據(jù),,,,其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為,(說(shuō)明:的導(dǎo)函數(shù)為)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《算法統(tǒng)宗》是中國(guó)古代數(shù)學(xué)名著,由明代數(shù)學(xué)家程大位所著,該作完善了珠算口訣,確立了算盤(pán)用法,完成了由籌算到珠算的徹底轉(zhuǎn)變,該作中有題為“李白沽酒”“李白街上走,提壺去買(mǎi)酒。遇店加一倍,見(jiàn)花喝一斗,三遇店和花,喝光壺中酒。借問(wèn)此壺中,原有多少酒?”,如圖為該問(wèn)題的程序框圖,若輸出的值為0,則開(kāi)始輸入的值為(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若是兩個(gè)相交平面,則在下列命題中,真命題的序號(hào)為( )

若直線(xiàn),則在平面內(nèi)一定不存在與直線(xiàn)平行的直線(xiàn).

若直線(xiàn),則在平面內(nèi)一定存在無(wú)數(shù)條直線(xiàn)與直線(xiàn)垂直.

若直線(xiàn),則在平面內(nèi)不一定存在與直線(xiàn)垂直的直線(xiàn).

若直線(xiàn),則在平面內(nèi)一定存在與直線(xiàn)垂直的直線(xiàn).

A. ①③ B. ②③ C. ②④ D. ①④

查看答案和解析>>

同步練習(xí)冊(cè)答案