定義在R上的函數(shù)f(x)滿足f(4)=1,f′(x)為f(x)的導函數(shù),已知函數(shù)y=f′(x)的圖象如圖所示.若正數(shù)a,b滿足f(2a+b)<1,則
a+2
b+2
的取值范圍是( 。
分析:先根據(jù)導函數(shù)的圖象判斷原函數(shù)的單調(diào)性,從而確定a、b的范圍得到答案
解答:解:由圖可知,當x>0時,導函數(shù)f'(x)>0,原函數(shù)單調(diào)遞增
∵兩正數(shù)a,b滿足f(2a+b)<1,
∴0<2a+b<4,∴b<4-2a,0<a<2
b+2
a+2
4-2a+2
a+2
=
10-(2a+4)
a+2
=-2+
10
a+2

∵0<a<2,∴
1
2
<-2+
10
a+2
<3,
從而
1
3
a+2
b+2
<2
故選A.
點評:本題主要考查函數(shù)的單調(diào)性與其導函數(shù)的正負之間的關(guān)系,即當導函數(shù)大于0時原函數(shù)單調(diào)遞增,當導函數(shù)小于0時原函數(shù)單調(diào)遞減
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當x∈[0,
π
2
]時,f(x)=sinx,則f(
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

20、已知定義在R上的函數(shù)f(x)=-2x3+bx2+cx(b,c∈R),函數(shù)F(x)=f(x)-3x2是奇函數(shù),函數(shù)f(x)在x=-1處取極值.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間[-3,3]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f(x+2)=
1-f(x)1+f(x)
,當x∈(0,4)時,f(x)=x2-1,則f(2010)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值與最小值的差為4,相鄰兩個最低點之間距離為π,函數(shù)y=sin(2x+
π
3
)圖象所有對稱中心都在f(x)圖象的對稱軸上.
(1)求f(x)的表達式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
,
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)的圖象是連續(xù)不斷的,且有如下對應值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函數(shù)f(x)一定存在零點的區(qū)間是( 。

查看答案和解析>>

同步練習冊答案