【題目】如圖,在平面直角坐標(biāo)系xOy中,過橢圓C: 的左頂點(diǎn)A作直線l,與橢圓C和y軸正半軸分別交于點(diǎn)P,Q.
(1)若AP=PQ,求直線l的斜率;
(2)過原點(diǎn)O作直線l的平行線,與橢圓C交于點(diǎn)M,N,求證: 為定值.
【答案】
(1)解:A(﹣2,0),設(shè)Q(0,m)(m>0),
∵AP=PQ,∴P(﹣1, ),
代入橢圓方程得: =1,
解得m= ,
∴直線l的斜率為
(2)證明:設(shè)直線l的斜率為k(k> ),直線l的方程為:y=k(x+2),
令x=0得y=2k,即Q(0,2k),
∴AQ= =2 .
聯(lián)立方程組 ,消元得:(1+4k2)x2+16k2x+16k2﹣4=0,
∴x1+x2= ,x1x2= ,
∴AP= = .
∴APAQ= .
直線MN的方程為y=kx,
聯(lián)立方程組 ,得(1+4k2)x2﹣4=0,
設(shè)N(x3,y3),M(﹣x3,﹣y3),
則 ,
∴MN=2ON=2 =4 ,
∴ = = .
∴ 為定值
【解析】(1)根據(jù)題意設(shè)出點(diǎn)Q的坐標(biāo),然后利用中點(diǎn)坐標(biāo)公式將點(diǎn)P的坐標(biāo)用點(diǎn)A、點(diǎn)Q的坐標(biāo)表示,并代入橢圓方程求出點(diǎn)Q的坐標(biāo)后即可求解;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|y= },集合B={x|y=lg(﹣x2﹣7x﹣12)},集合C={x|m+1≤x≤2m﹣1}.
(1)求A∩B;
(2)若A∪C=A,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣x2﹣2a,若存在x0∈(﹣∞,a],使f(x0)≥0,則實(shí)數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=e|x| , 將函數(shù)f(x)的圖象向右平移3個單位后,再向上平移2個單位,得到函數(shù)g(x)的圖象,函數(shù)h(x)= 若對于任意的x∈[3,λ](λ>3),都有h(x)≥g(x),則實(shí)數(shù)λ的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)與g(x)的圖象關(guān)于原點(diǎn)對稱,且它們的圖象拼成如圖所示的“Z”形折線段ABOCD,不含A(0,1),B(1,1),O(0,0),C(﹣1,﹣1),D(0,﹣1)五個點(diǎn).則滿足題意的函數(shù)f(x)的一個解析式為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明設(shè)置的手機(jī)開機(jī)密碼若連續(xù)3次輸入錯誤,則手機(jī)被鎖定,5分鐘后,方可重新輸入.某日,小明忘記了開機(jī)密碼,但可以確定正確的密碼是他常用的4個密碼之一,于是,他決定逐個(不重復(fù))進(jìn)行嘗試.
(1)求手機(jī)被鎖定的概率;
(2)設(shè)第X次輸入后能成功開機(jī),求X的分布列和數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某景點(diǎn)擬建一個扇環(huán)形狀的花壇(如圖所示),按設(shè)計要求扇環(huán)的周長為36米,其中大圓弧所在圓的半徑為14米,設(shè)小圓弧所在圓的半徑為x米,圓心角為θ(弧度).
(1)求θ關(guān)于x的函數(shù)關(guān)系式;
(2)已知對花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時,直線部分的裝飾費(fèi)用為4元/米,弧線部分的裝飾費(fèi)用為16元/米,設(shè)花壇的面積與裝飾總費(fèi)用之比為y,求y關(guān)于x的函數(shù)關(guān)系式,并求出y的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于數(shù)列 , , , ,若滿足 ,則稱數(shù)列 為“ 數(shù)列”.
若存在一個正整數(shù) ,若數(shù)列 中存在連續(xù)的 項(xiàng)和該數(shù)列中另一個連續(xù)的 項(xiàng)恰好按次序?qū)?yīng)相等,則稱數(shù)列 是“ 階可重復(fù)數(shù)列”,
例如數(shù)列 因?yàn)? , , , 與 , , , 按次序?qū)?yīng)相等,所以數(shù)列 是“ 階可重復(fù)數(shù)列”.
(I)分別判斷下列數(shù)列 , , , , , , , , , .是否是“ 階可重復(fù)數(shù)列”?如果是,請寫出重復(fù)的這 項(xiàng);
(II)若項(xiàng)數(shù)為 的數(shù)列 一定是 “ 階可重復(fù)數(shù)列”,則 的最小值是多少?說明理由;
(III)假設(shè)數(shù)列 不是“ 階可重復(fù)數(shù)列”,若在其最后一項(xiàng) 后再添加一項(xiàng) 或 ,均可 使新數(shù)列是“ 階可重復(fù)數(shù)列”,且 ,求數(shù)列 的最后一項(xiàng) 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com