如圖,在三棱錐中,平面,為側(cè)棱上一點,它的正(主)視圖和側(cè)(左)視圖如圖所示.

(1)證明:平面;
(2)在的平分線上確定一點,使得平面,并求此時的長.
(1)詳見解析;(2).

試題分析:試題分析:(1)先利用三視圖將幾何體進行還原,證明平面,要證明垂直于平面內(nèi)的兩條相交直線,由正視圖可以知道為等腰三角形,且為底邊的中點,利用三線合一可以得到,再利用,結(jié)合直線與平面垂直的判定定理證明平面,于是得到,最終利用直線與平面垂直的判定定理得到平面;(2)注意到點的中點,因此可以以、為鄰邊構(gòu)造平行四邊形,連接于點,利用中位線證明,再結(jié)合直線與平面平行的判定定理可以得到平面,最終利用勾股定理求的長度.
試題解析:(1)因為平面,所以,
,所以平面,而,所以
由三視圖得,在中,,中點,
所以,又,平面
(2)如圖取的中點,連接并延長至,

使得,點即為所求.
因為中點,所以
因為平面,平面,所以平面,
連接,,四邊形的對角線互相平分,
所以為平行四邊形,所以,
平面,所以在直角中,
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E為棱SB上任一點.

(Ⅰ)求證:無論E點取在何處恒有;
(Ⅱ)設,當平面EDC平面SBC時,求的值;
(Ⅲ)在(Ⅱ)的條件下求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知四棱錐P-ABCD的底面為直角梯形,AD∥BC,∠BCD=900,PA=PB,PC=PD.

(I) 試判斷直線CD與平面PAD是否垂直,并簡述理由;
(II)求證:平面PAB⊥平面ABCD;
(III)如果CD=AD+BC,二面角P-CB-A等于600,求二面角P-CD-A的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖1,在直角梯形中,,,. 把沿對角線折起到的位置,如圖2所示,使得點在平面上的正投影恰好落在線段上,連接,點分別為線段的中點.

(1)求證:平面平面
(2)求直線與平面所成角的正弦值;
(3)在棱上是否存在一點,使得到點四點的距離相等?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖:四邊形是梯形,,,三角形是等邊三角形,且平面 平面,,,

(1)求證:平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱中,

(Ⅰ)求證:平面;
(Ⅱ)若的中點,求與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱中,,點分別為的中點.

(1)證明:平面;
(2)求所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一條線段夾在一個直二面角的兩個半平面內(nèi),它與兩個半平面所成的角都是,則這條線段與這個二面角的棱所成角的大小為          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是兩條不同的直線,是兩個不同的平面,則下列命題正確的是(  )
A.若,則B.若,則
C.若,則D.若,則

查看答案和解析>>

同步練習冊答案