已知P(x,y),A(-1,0),向量
PA
與向量
m
=(1,1)共線.
(1)求y關(guān)于x的函數(shù);
(2)已知點(diǎn)B(1,2),請(qǐng)?jiān)谥本y=3x上找一點(diǎn)C,使得
PB
PC
>0時(shí)x的取值集合為{x|x<-1或x>1}.
考點(diǎn):平面向量數(shù)量積的運(yùn)算,函數(shù)解析式的求解及常用方法,平面向量共線(平行)的坐標(biāo)表示
專題:平面向量及應(yīng)用
分析:(1)利用向量共線定理即可得出;
(2)利用向量的數(shù)量積運(yùn)算、一元二次不等式的解法即可得出.
解答: 解:(1)
PA
=(-1-x,-y).
∵向量
PA
與向量
m
=(1,1)共線,
∴-y-(-1-x)=0,化為y=x+1.
(2)設(shè)C(m,3m),P(x,x+1).
PB
=(1-x,1-x),
PC
=(m-x,3m-x-1),
PB
PC
=(1-x)(m-x)+(1-x)(3m-x-1)=(1-x)(4m-2x-1)>0,
化為(x-1)(2x-4m+1)>0.
PB
PC
>0時(shí)x的取值集合為{x|x<-1或x>1}.
∴4m-1=-1,解得m=0.
∴C(0,0).
點(diǎn)評(píng):本題考查了向量共線定理、向量的數(shù)量積運(yùn)算、一元二次不等式的解法,考查了推理能力和計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
1
2
x2-lnx.
①求函數(shù)f(x)的值域;
②討論方程
1
2
x2-lnx=m的根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=
n2+n
2
,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式; 
(2)設(shè)bn=2n+(-1)nan,求數(shù)列{bn}的前2n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,sinA+sinB=
2
sinC,且△ABC的周長為
2
+1.
(1)求邊AB的長;
(2)若△ABC的面積為
1
6
sinC,求角C的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為
1
2
,乙每次擊中目標(biāo)的概率為
2
3

(1)求乙至多擊中目標(biāo)2次的概率;
(2)記甲擊中目標(biāo)的次數(shù)為Z,求Z的分布列、數(shù)學(xué)期望和標(biāo)準(zhǔn)差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-ax+2,g(x)=ax+2
(1)若關(guān)于x的方程f(x)=g(x)在(1,2)內(nèi)恰有一解,求a的取值范圍;
(2)設(shè)h(x)=
f(x),f(x)≥g(x)
g(x),f(x)<g(x)
,求h(x)的最小值;
(3)定義:已知函數(shù)T(x)在[m,n](m<n)上的最小值為t,若t≤m恒成立,則稱函數(shù)T(x)在[m,n](m<n)上具有“DK”性質(zhì).如果f(x)在[a,a+1]上具有“DK”性質(zhì),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩條直線l1:x-y+4=0與l2:2x+y+2=0的交點(diǎn)P,求滿足下列條件的直線方程.
(1)過點(diǎn)P且過原點(diǎn)的直線方程;
(2)過點(diǎn)P且平行于直線l3:x-2y-1=0的直線l方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一只螞蟻在三邊長分別為3、4、5的三角形面內(nèi)爬行,某時(shí)間該螞蟻距離三角形的三個(gè)頂點(diǎn)的距離均超過1的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2x+asinx.
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的值域;
(2)若函數(shù)f(x)的最小值為-6,求實(shí)數(shù)a的值;
(3)若a∈R,求函數(shù)f(x)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案