已知集合A={x|a-1≤x≤a+3},B={x|x≤-2或x≥5}.
(1)若a=-2,求A∩B,A∪B;
(2)若A⊆B,求實(shí)數(shù)a的取值范圍.
考點(diǎn):交集及其運(yùn)算,集合的包含關(guān)系判斷及應(yīng)用
專題:集合
分析:(1)a=-2時(shí),A={x|a-1≤x≤a+3}={x|-3≤x≤1},B={x|x≤-2或x≥5},由此能求出A∩B,A∪B.
(2)由A⊆B,得a+3≤-2或a-1≥5,由此能求出實(shí)數(shù)a的取值范圍.
解答: 解:(1)a=-2時(shí),A={x|a-1≤x≤a+3}={x|-3≤x≤1},
B={x|x≤-2或x≥5},
∴A∩B={x|-3≤x≤-2},
A∪B={x|x≤-2或x≥5}.
(2)∵A⊆B,
∴a+3≤-2或a-1≥5,
解得a≤-5或a≥6.
點(diǎn)評:本題考查集合的交集和并集的求法,考查實(shí)數(shù)的取值范圍的求法,解題時(shí)要注意集合性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

π
4
終邊相同的角的集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐S-ABC中,SA、SB、SC兩兩互相垂直,SA=2,SB=SC=1.則S到平面ABC距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知,中心在原點(diǎn)O,焦點(diǎn)在x軸上的橢圓C,它的長軸長為4,短軸長為2
2

(1)求該橢圓C的離心率;
(2)若M,N是橢圓C上的不同二點(diǎn),滿足直線OM與ON的斜率之積為-
1
2
,且
OP
=
OM
+2
ON
,求動點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+3,x≥0
x+4,x<0
,則f(f(1))=(  )
A、4B、5C、28D、19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)a,b,c滿足a≤b+c≤3a,b2≤a(a+c)≤3b2.求
c-b
a
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)同時(shí)滿足以下三個(gè)條件:
(1)存在反函數(shù)f-1(x);
(2)點(diǎn)(1,1005)在函數(shù)f(x)的圖象上;
(3)函數(shù)f(x+1)的反函數(shù)為f-1(x-1).
則f(1004)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α,β都是銳角,且tanα=
2
3
,tanβ=
9
4
,你能否根據(jù)正切函數(shù)的增減性直接判斷α+β是否為銳角?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用秦九韶算法計(jì)算多項(xiàng)式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4時(shí)的值時(shí),V3的值為( 。
A、-845B、220
C、-57D、34

查看答案和解析>>

同步練習(xí)冊答案