【題目】在直角坐標(biāo)系中,圓的方程為.

1)若圓上有兩點(diǎn),關(guān)于直線對(duì)稱,且,求直線的方程;

2)圓軸相交于,兩點(diǎn),圓內(nèi)的動(dòng)點(diǎn)使,成等比數(shù)列,求的取值范圍.

【答案】1,;(2.

【解析】

1)根據(jù),關(guān)于直線對(duì)稱,可以求出直線的斜率,這樣設(shè)出直線方程,利用圓的垂徑定理、點(diǎn)到直線的距離公式,可以求出直線的方程;

2)求出,兩點(diǎn)坐標(biāo),設(shè),由等比數(shù)列的性質(zhì),可得等式,最后求出的表達(dá)式,再根據(jù)點(diǎn)在圓內(nèi),最后求出的取值范圍.

1)因?yàn)橹本的斜率為,所以直線的斜率為2,設(shè)直線的方程為:,因?yàn)?/span>的半徑為2,,所以圓心到直線的距離為:,因此有:,所以

.

2)易知,.設(shè),由,,成等比數(shù)列,得,兩邊平方得,即.

.

由于點(diǎn)在圓內(nèi),∴.,∴,得.

的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了解某產(chǎn)品的獲利情況,將今年17月份的銷(xiāo)售收入(單位:萬(wàn)元)與純利潤(rùn)(單位:萬(wàn)元)的數(shù)據(jù)進(jìn)行整理后,得到如下表格:

月份

1

2

3

4

5

6

7

銷(xiāo)售收入

13

13.5

13.8

14

14.2

14.5

15

純利潤(rùn)

3.2

3.8

4

4.2

4.5

5

5.5

該公司先從這7組數(shù)據(jù)中選取5組數(shù)據(jù)求純利潤(rùn)關(guān)于銷(xiāo)售收入的線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).假設(shè)選取的是2月至6月的數(shù)據(jù).

1)求純利潤(rùn)關(guān)于銷(xiāo)售收入的線性回歸方程(精確到0.01);

2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)0.1萬(wàn)元,則認(rèn)為得到的線性回歸方程是理想的.試問(wèn)該公司所得線性回歸方程是否理想?

參考公式:,,,;參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司計(jì)劃投資開(kāi)發(fā)一種新能源產(chǎn)品,預(yù)計(jì)能獲得10萬(wàn)元1000萬(wàn)元的收益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)開(kāi)發(fā)科研小組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金(單位:萬(wàn)元)隨收益(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金總數(shù)不超過(guò)9萬(wàn)元,同時(shí)獎(jiǎng)金總數(shù)不超過(guò)收益的.

(Ⅰ)若建立獎(jiǎng)勵(lì)方案函數(shù)模型,試確定這個(gè)函數(shù)的定義域、值域和的范圍;

(Ⅱ)現(xiàn)有兩個(gè)獎(jiǎng)勵(lì)函數(shù)模型:①;②.試分析這兩個(gè)函數(shù)模型是否符合公司的要求?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,平面平面,,,,分別為線段,上的點(diǎn),且,.

(1)求證:平面;

(2)若直線與平面所成的角為,求平面與平面所成的銳二面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)絡(luò)平臺(tái)從購(gòu)買(mǎi)該平臺(tái)某課程的客戶中,隨機(jī)抽取了100位客戶的數(shù)據(jù),并將這100個(gè)數(shù)據(jù)按學(xué)時(shí)數(shù),客戶性別等進(jìn)行統(tǒng)計(jì),整理得到如表:

學(xué)時(shí)數(shù)

男性

18

12

9

9

6

4

2

女性

2

4

8

2

7

13

4

(1)根據(jù)上表估計(jì)男性客戶購(gòu)買(mǎi)該課程學(xué)時(shí)數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表,結(jié)果保留小數(shù)點(diǎn)后兩位);

(2)從這100位客戶中,對(duì)購(gòu)買(mǎi)該課程學(xué)時(shí)數(shù)在20以下的女性客戶按照分層抽樣的方式隨機(jī)抽取7人,再?gòu)倪@7人中隨機(jī)抽取2人,求這2人購(gòu)買(mǎi)的學(xué)時(shí)數(shù)都不低于15的概率.

(3)將購(gòu)買(mǎi)該課程達(dá)到25學(xué)時(shí)及以上者視為“十分愛(ài)好該課程者”,25學(xué)時(shí)以下者視,為“非十分愛(ài)好該課程者”.請(qǐng)根據(jù)已知條件完成以下列聯(lián)表,并判斷是否有99.9%的把握認(rèn)為“十分愛(ài)好該課程者”與性別有關(guān)?

非十分愛(ài)好該課程者

十分愛(ài)好該課程者

合計(jì)

男性

女性

合計(jì)

100

附:,

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】參加衡水中學(xué)數(shù)學(xué)選修課的同學(xué),對(duì)某公司的一種產(chǎn)品銷(xiāo)量與價(jià)格進(jìn)行統(tǒng)計(jì),得到如下數(shù)據(jù)和散點(diǎn)圖:

定價(jià)(元/

年銷(xiāo)售

(參考數(shù)據(jù):

(I)根據(jù)散點(diǎn)圖判斷,哪一對(duì)具有較強(qiáng)的線性相關(guān)性(給出判斷即可,不必說(shuō)明理由)?

(II)根據(jù)(I)的判斷結(jié)果有數(shù)據(jù),建立關(guān)于的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字);

(III)定價(jià)為多少元/時(shí),年利潤(rùn)的預(yù)報(bào)值最大?

附:對(duì)一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了組建一支業(yè)余足球隊(duì),在高一年級(jí)隨機(jī)選取50名男生測(cè)量身高,發(fā)現(xiàn)被測(cè)男生的身高全部在之間,將測(cè)量結(jié)果按如下方式分成六組:第1,第2,第6,如圖是按上述分組得到的頻率分布直方圖,以頻率近似概率.

1)若學(xué)校要從中選1名男生擔(dān)任足球隊(duì)長(zhǎng),求被選取的男生恰好在第5組或第6組的概率;

2)試估計(jì)該校高一年級(jí)全體男生身高的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表)與中位數(shù);

3)現(xiàn)在從第5與第6組男生中選取兩名同學(xué)擔(dān)任守門(mén)員,求選取的兩人中最多有1名男生來(lái)自第5組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)不同身高的未成年男性的體重平均值如下表:

身高x(cm)

60

70

80

90

100

110

120

130

140

體重y(kg)

6.13

7.90

9.99

12.15

15.02

17.50

20.92

26.86

31.11

已知之間存在很強(qiáng)的線性相關(guān)性,

(Ⅰ)據(jù)此建立之間的回歸方程;

(Ⅱ)若體重超過(guò)相同身高男性體重平均值的倍為偏胖,低于倍為偏瘦,那么這個(gè)地區(qū)一名身高體重為 的在校男生的體重是否正常?

參考數(shù)據(jù):

附:對(duì)于一組數(shù)據(jù),其回歸直線 中的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的內(nèi)角、、的對(duì)邊分別為、、,內(nèi)一點(diǎn),若分別滿足下列四個(gè)條件:

;

;

則點(diǎn)分別為的(

A.外心、內(nèi)心、垂心、重心B.內(nèi)心、外心、垂心、重心

C.垂心、內(nèi)心、重心、外心D.內(nèi)心、垂心、外心、重心

查看答案和解析>>

同步練習(xí)冊(cè)答案