13.已知tanθ=2,則2sin2θ+sinθcosθ=( 。
A.2B.$\frac{5}{6}$C.-$\frac{3}{4}$D.$\frac{6}{5}$

分析 由于tanθ=2,利用“弦化切”可得$\frac{2si{n}^{2}θ+sinθcosθ}{1}=\frac{2si{n}^{2}θ+sinθcosθ}{si{n}^{2}θ+co{s}^{2}θ}$即可求解.

解答 解:∵tanθ=2,
∴2sin2θ+sinθcosθ=$\frac{2si{n}^{2}θ+sinθcosθ}{1}=\frac{2si{n}^{2}θ+sinθcosθ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{2ta{n}^{2}θ+tanθ}{ta{n}^{2}θ+1}$=$\frac{8+2}{4+1}=2$.
故選:A.

點評 本題考查了“弦化切”及同角三角函數(shù)基本關系式,考查了計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得$\sum_{i=1}^{10}$xi=80,$\sum_{i=1}^{10}$yi=20,$\sum_{i=1}^{10}$xiyi=184,$\sum_{i=1}^{10}$x${\;}_{i}^{2}$=720.附:線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中,$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\overline{{x}^{2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,其中$\overline{x}$,$\overline{y}$為樣本平均值.
(1)求家庭的月儲蓄y對月收入x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)判斷變量x與y之間是正相關還是負相關;
(3)若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知函數(shù)f(x)=ex+a,x∈[m,n]的值域為[2m,2n],則a的取值范圍是(-∞,-2+2ln2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知兩點A(4,5),B(-2,3),則$|\overrightarrow{AB}|$=2$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.(1)已知α∈($\frac{π}{2}$,π),且sin$\frac{α}{2}$+cos$\frac{α}{2}$=$\frac{\sqrt{6}}{2}$,求cosα的值;
(2)已知sin(θ+$\frac{π}{4}$)=$\frac{3}{5}$,求cos($\frac{π}{4}$-θ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知集合A={x|x>0},集合B={x|2≤x≤3},則A∩B=( 。
A.[3,+∞)B.[2,3]C.(0,2]∪[3,+∞)D.(0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在△ABC中,BC=5,AC=8,C=60°,則$\overrightarrow{BC}•\overrightarrow{CA}$=(  )
A.20B.-20C.$20\sqrt{3}$D.$-20\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.若關于x的不等式|2x-1|-|x-1|≤log2a有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1({a>b>0})$的上、下焦點分別為F1,F(xiàn)2,上焦點F1到直線 4x+3y+12=0的距離為3,橢圓C的離心率e=$\frac{1}{2}$.
(Ⅰ)求橢圓C的標準方程
(Ⅱ)設過橢圓C的上頂點A的直線l與橢圓交于點B(B不在y軸上),垂直于l的直線與l交于點M,與x軸交于點H,若$\overrightarrow{{F_1}B}•\overrightarrow{{F_1}H}$=0,且|${\overrightarrow{MO}}$|=|${\overrightarrow{MA}}$|,求直線l的方程.

查看答案和解析>>

同步練習冊答案