已知函數(shù)y=
x2+1,(x≤0)
-2x,x>0
,使函數(shù)值為5的x的值是( 。
A、2或-2或-
5
2
B、2或-
5
2
C、2或-2
D、-2
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用分段函數(shù)的性質(zhì)求解.
解答: 解:∵函數(shù)y=
x2+1,(x≤0)
-2x,x>0
,函數(shù)值為5,
∴當(dāng)x≤0時(shí),x2+1=5,解得x=-2,或x=2(舍),
當(dāng)x>0時(shí),-2x=5,解得x=-
5
2
,(舍).
故選:D.
點(diǎn)評(píng):本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要注意分段函數(shù)的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=x
1
2
與y=x2圍成的封閉區(qū)域的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線y=4x與曲線y=x3圍成的封閉圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

利用單調(diào)性定義判斷函數(shù)f(x)=x+
4
x
在[1,4]上的單調(diào)性并求其最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x2+2,g(x)=4x-1的定義域都是集合A,函數(shù)f(x)和g(x)的值域分別為S和T.
(1)若A=[1,2],求S∩T;
(2)若A=[0,m],且S⊆T,求實(shí)數(shù)m的取值范圍;
(3)若對(duì)于A中的每一個(gè)x值,都有f(x)=g(x),求集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若定義在R上的函數(shù)f(x)滿足f(-x)=f(x),f(2-x)=f(x),且當(dāng)x∈[0,1]時(shí),f(x)=
1-x2
,則函數(shù)H(x)=|xex|-f(x)在區(qū)間[-5,1]上的零點(diǎn)個(gè)數(shù)為(  )
A、4B、8C、6D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sin(π-α)=-
5
3
且α∈(π,
2
),則sin(
π
2
+
α
2
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)曲線y=ax-ln(x+1)在點(diǎn)(0,0)處的切線方程為y=2x,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為y=
2
x,則雙曲線的離心率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案