【題目】如圖,在四棱錐E﹣ABCD中,△ABD是正三角形,△BCD是等腰三角形,∠BCD=120°,EC⊥BD.
(Ⅰ)求證:BE=DE;
(Ⅱ)若AB=2 ,AE=3 ,平面EBD⊥平面ABCD,直線AE與平面ABD所成的角為45°,求二面角B﹣AE﹣D的余弦值.

【答案】證明:(Ⅰ)取BD中點(diǎn)O,連結(jié)CO,EO, ∵△BCD是等腰三角形,∠BCD=120°,∴CB=CD,∴CO⊥BD,
又∵EC⊥BD,EC∩CO=C,∴BD⊥平面EOC,∴EO⊥BD,
在△BDE中,∵O為BD的中點(diǎn),∴BE=DE.
(Ⅱ)∵平面EBD⊥平面ABCD,平面EBD∩平面ABCD=BD,
EO⊥BD,
∴EO⊥平面ABCD,又∵CO⊥BD,AO⊥BD,
∴A,O,C三點(diǎn)共線,AC⊥BD,
以O(shè)為原點(diǎn),OA為x軸,OB為y軸,OE為z軸,建立空間直角坐標(biāo)系,
在正△ABCD中,AB=2 ,∴AO=3,BO=DO= ,
∵直線AE與平面ABD所成角為45°,∴EO=AO=3,
A(3,0,0),B(0, ,0),D(0,﹣ ,0),E(0,0,3),
=(﹣3, ,0), =(﹣3,﹣ ,0), =(﹣3,0,3),
設(shè)平面ABE的法向量 =(a,b,c),
,取a=1,得 =(1, ,1),
設(shè)平面ADE的法向量 =(x,y,z),
,取x=1,得 =(1,﹣ ,1),
設(shè)二面角B﹣AE﹣D為θ,
則cosθ= = =
∴二面角B﹣AE﹣D的余弦值為

【解析】(Ⅰ)取BD中點(diǎn)O,連結(jié)CO,EO,推導(dǎo)出CO⊥BD,EO⊥BD,由此能證明BE=DE.(Ⅱ)以O(shè)為原點(diǎn),OA為x軸,OB為y軸,OE為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角B﹣AE﹣D的余弦值.
【考點(diǎn)精析】通過靈活運(yùn)用棱錐的結(jié)構(gòu)特征,掌握側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x2﹣x﹣1)ex
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)若方程a( +1)+ex=ex在(0,1)內(nèi)有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校的學(xué)生記者團(tuán)由理科組和文科組構(gòu)成,具體數(shù)據(jù)如下表所示:

組別

理科

文科

性別

男生

女生

男生

女生

人數(shù)

4

4

3

1

學(xué)校準(zhǔn)備從中選出4人到社區(qū)舉行的大型公益活動(dòng)進(jìn)行采訪,每選出一名男生,給其所在小組記1分,每選出一名女生則給其所在小組記2分,若要求被選出的4人中理科組、文科組的學(xué)生都有.
(Ⅰ)求理科組恰好記4分的概率?
(Ⅱ)設(shè)文科男生被選出的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l: (t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的坐標(biāo)方程為ρ=2cosθ.
(1)將曲線C的極坐標(biāo)方程化為直坐標(biāo)方程;
(2)設(shè)點(diǎn)M的直角坐標(biāo)為(5, ),直線l與曲線C的交點(diǎn)為A,B,求|MA||MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C1 一焦點(diǎn)與拋物線y2=8x的焦點(diǎn)F相同,若拋物線y2=8x的焦點(diǎn)到雙曲線C1的漸近線的距離為1,P為雙曲線左支上一動(dòng)點(diǎn),Q(1,3),則|PF|+|PQ|的最小值為(
A.4
B.4
C.4
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在小正方形邊長(zhǎng)為1的網(wǎng)格中畫出了某多面體的三視圖,則該多面體的外接球表面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|2x+a|+|x﹣ |(x∈R,實(shí)數(shù)a<0).
(Ⅰ)若f(0)> ,求實(shí)數(shù)a的取值范圍;
(Ⅱ)求證:f(x)≥

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 C: =1( a>b>0)經(jīng)過點(diǎn) (1, ),離心率為 ,點(diǎn) A 為橢圓 C 的右頂點(diǎn),直線 l 與橢圓相交于不同于點(diǎn) A 的兩個(gè)點(diǎn)P (x1 , y1),Q (x2 , y2).
(Ⅰ)求橢圓 C 的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng) =0 時(shí),求△OPQ 面積的最大值;
(Ⅲ)若直線 l 的斜率為 2,求證:△APQ 的外接圓恒過一個(gè)異于點(diǎn) A 的定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科技博覽會(huì)展出的智能機(jī)器人有 A,B,C,D 四種型號(hào),每種型號(hào)至少有 4 臺(tái).要求每 位購買者只能購買1臺(tái)某種型號(hào)的機(jī)器人,且購買其中任意一種型號(hào)的機(jī)器人是等可能的.現(xiàn)在有 4 個(gè)人要購買機(jī)器人.
(Ⅰ)在會(huì)場(chǎng)展覽臺(tái)上,展出方已放好了 A,B,C,D 四種型號(hào)的機(jī)器人各一臺(tái),現(xiàn)把他們 排成一排表演節(jié)目,求 A 型與 B 型相鄰且 C 型與 D 型不相鄰的概率;
(Ⅱ)設(shè)這 4 個(gè)人購買的機(jī)器人的型號(hào)種數(shù)為ξ,求ξ 的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案