f(x)=
1
3
x3-
1
2
x2
在區(qū)間[-1,1]上的最大值是
0
0
分析:求導函數(shù),確定函數(shù)的單調性,從而可求函數(shù)的最值.
解答:解:求導函數(shù)可得:f′(x)=x2-x=x(x-1)
令f′(x)>0,可得x<0或x>1;令f′(x)<0,可得0<x<1;
∵x∈[-1,1]
∴函數(shù)在[-1,0]上單調增,在[0,1]上單調減
∴x=0時,函數(shù)取得極大值,且為最大值
f(x)=
1
3
x3-
1
2
x2
在區(qū)間[-1,1]上的最大值是0
故答案為:0
點評:本題考查利用導數(shù)求函數(shù)的最值,解題的關鍵是利用導數(shù)確定函數(shù)的單調性,最大值在極大值點處或端點取得.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
13
x3-ax2+(a2-1)x+b(a,b∈R)

(1)若x=1為f(x)的極值點,求a的值;
(2)若y=f(x)的圖象在點(1,f(1))處的切線方程為x+y-3=0,
(i)求f(x)在區(qū)間[-2,4]上的最大值;
(ii)求函數(shù)G(x)=[f'(x)+(m+2)x+m]e-x(m∈R)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
13
x3-x2+ax-a
,(a∈R)在x=-1時取得極值,求a的值及f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算 f(x)=
1
3
x3-
3
2
x2+2x+1
x∈[0,
3
2
]
時函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+
1
2
ax2+bx
,a,b∈R,f'(x)是函數(shù)f(x)的導函數(shù).
(I)若b=a-1,求函數(shù)f(x)的單調遞減區(qū)間;
(II)若-1≤a≤1,-1≤b≤1,求方程f'(x)=0有實數(shù)根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項數(shù)列{an}中a1=2,點(
an
,an+1)
在函數(shù)f(x)=
1
3
x3+x
的導函數(shù)y=f'(x)圖象上,數(shù)列{bn}中,點(bn,Sn)在直線y=-
1
2
x+3
上,其中Sn是數(shù)列{bn}的前n項和(n∈N*
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)若數(shù)列{cn}滿足cn=
1
2
anbn
,且數(shù)列{cn}的前n項和Tn,求證:Tn
15
4

查看答案和解析>>

同步練習冊答案