若方程2x+x-5=0在區(qū)間(n,n+1)上有實數(shù)根,其中n為正整數(shù),則n的值為
 
考點:函數(shù)零點的判定定理
專題:計算題,函數(shù)的性質及應用
分析:方程2x+x-5=0在區(qū)間(n,n+1)上有實數(shù)根可化為函數(shù)f(x)=2x+x-5在區(qū)間(n,n+1)上有零點,從而由零點的判定定理求解.
解答: 解:方程2x+x-5=0在區(qū)間(n,n+1)上有實數(shù)根可化為
函數(shù)f(x)=2x+x-5在區(qū)間(n,n+1)上有零點,
函數(shù)f(x)=2x+x-5在定義域上連續(xù),
f(1)=2+1-5<0,f(2)=4+2-5>0;
故方程2x+x-5=0在區(qū)間(1,2)上有實數(shù)根,
故n的值為1;
故答案為:1.
點評:本題考查了方程的根與函數(shù)的零點的關系應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和記為Sn,且a3=5,S3=6,則a7=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,某企業(yè)擬建造一個體積為V的圓柱型的容器(不計厚度,長度單位:米).已知圓柱兩個底面部分每平方米建造費用為a千元,側面部分每平方米建造費用為b千元.假設該容器的建造費用僅與其表面積有關,設圓柱的底面半徑為r,高為h(h≥2r),該容器的總建造費用為y千元.
(1)寫出y關于r的函數(shù)表達式,并求出此函數(shù)的定義域;
(2)求該容器總建造費用最小時r的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖的程序框圖,如果輸入x的值為0,那么輸出的y是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,程序框圖(算法流程圖)的輸出結果是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的偶函數(shù)f(x)的圖象關于直線x=1對稱,若函數(shù)g(x)=f(x)+x在區(qū)間[0,1]上的值域為[0,3],則函數(shù)g(x)在區(qū)間[2010,2011]上的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π).若f(x)的圖象過點M(
π
6
,1)及N(
3
,-1),且f(x)在區(qū)間[
π
6
3
]上時單調的.
(1)求f(x)的解析式;
(2)將f(x)的圖象先向左平移t(t>0)個單位,再向上平移一個單位后所得圖象對應函數(shù)為g(x),若g(x)的圖象恰好過原點,求t的取值構成的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在邊長為3的等邊三角形ABC中,
CD
=2
DB
,則
AB
CD
等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將指數(shù)函數(shù)f(x)的圖象向右平移一個單位,得到如圖的g(x)的圖象,則f(x)=(  )
A、(
1
2
x
B、(
1
3
x
C、2x
D、3x

查看答案和解析>>

同步練習冊答案