在直角坐標(biāo)系中,射線OA: x-y=0(x≥0),
OB: x+2y=0(x≥0),過點(diǎn)P(1,0)作直線分別交射線OA、OB于A、B兩點(diǎn).
(1)當(dāng)AB中點(diǎn)為P時(shí),求直線AB的方程;
(2)當(dāng)AB中點(diǎn)在直線上時(shí),求直線AB的方程.
(1);(2)
解析試題分析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1c/1/1m1z84.png" style="vertical-align:middle;" />分別為直線與射線及的交點(diǎn), 所以可設(shè),又點(diǎn)是的中點(diǎn),
所以有即∴A、B兩點(diǎn)的坐標(biāo)為, 4分
∴, 5分
所以直線AB的方程為,即 6分
(2)①當(dāng)直線的斜率不存在時(shí),則的方程為,易知兩點(diǎn)的坐標(biāo)分別為所以的中點(diǎn)坐標(biāo)為,顯然不在直線上,
即的斜率不存在時(shí)不滿足條件. 8分
②當(dāng)直線的斜率存在時(shí),記為,易知且,則直線的方程為
分別聯(lián)立及
可求得兩點(diǎn)的坐標(biāo)分別為
所以的中點(diǎn)坐標(biāo)為 .10分
又的中點(diǎn)在直線上,所以解得
所以直線的方程為,即 13分
考點(diǎn):本題考查了直線的方程
點(diǎn)評(píng):求直線方程的一般方法
(1)直接法:直接選用直線方程的其中一種形式,寫出適當(dāng)?shù)闹本方程;
(2)待定系數(shù)法:先由直線滿足的一個(gè)條件設(shè)出直線方程,方程中含有一個(gè)待定系數(shù),再由題目中給出的另一條件求出待定系數(shù),最后將求得的系數(shù)代入所設(shè)方程,即得所求直線方程。簡而言之:設(shè)方程、求系數(shù)、代入。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在正方形中,為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,分別將線段和十等分,分點(diǎn)分別記為和,連接,過作軸的垂線與交于點(diǎn)。
(Ⅰ)求證:點(diǎn)都在同一條拋物線上,并求拋物線的方程;
(Ⅱ)過點(diǎn)作直線與拋物線E交于不同的兩點(diǎn), 若與的面積之比為4:1,求直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的左、右焦點(diǎn)分別是,Q是橢圓外的動(dòng)點(diǎn),滿足.點(diǎn)是線段與該橢圓的交點(diǎn),點(diǎn)T是的中點(diǎn).
(Ⅰ)設(shè)為點(diǎn)的橫坐標(biāo),證明;
(Ⅱ)求點(diǎn)T的軌跡的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)是(0,),(0,),又點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)已知直線的斜率為,若直線與橢圓交于、兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為幾點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.已知直線上兩點(diǎn)的極坐標(biāo)分別為,圓的參數(shù)方程(為參數(shù)).
(Ⅰ)設(shè)為線段的中點(diǎn),求直線的平面直角坐標(biāo)方程;
(Ⅱ)判斷直線與圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,右頂點(diǎn)為,設(shè)點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動(dòng)點(diǎn),求線段中點(diǎn)的軌跡方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的右焦點(diǎn)為,直線與軸交于點(diǎn),若(其中為坐標(biāo)原點(diǎn)).
(I)求橢圓的方程;
(II)設(shè)是橢圓上的任意一點(diǎn),為圓的任意一條直徑(、為直徑的兩個(gè)端點(diǎn)),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若直線過雙曲線的一個(gè)焦點(diǎn),且與雙曲線的一條漸近線平行.
(Ⅰ)求雙曲線的方程;
(Ⅱ)若過點(diǎn)與軸不平行的直線與雙曲線相交于不同的兩點(diǎn)的垂直平分線為,求直線在軸上截距的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com