(本小題滿分13分)

如圖所示,橢圓C:的一個焦點為 F(1,0),且過點。

(1)求橢圓C的方程;

(2)已知A、B為橢圓上的點,且直線AB垂直于軸,  

直線=4與軸交于點N,直線AF與BN交

于點M。

(ⅰ)求證:點M恒在橢圓C上;

(ⅱ)求△AMN面積的最大值.

(1)解:由題設(shè),從而,

所以橢圓C的方程為                    ………………………………3分

(2)(i)證明:由題意得F(1,0)、N(4,0).

設(shè),則,.

AF與BN的方程分別為:

.

設(shè),則有

由上得                      ………………………………6分

由于

=1.

所以點M恒在橢圓C上.                                 ………………………………8分

(ⅱ)解:設(shè)AM的方程為,代入,

設(shè)、,則有,.

. ………………………10分

,則

因為函數(shù)為增函數(shù),

所以當(dāng)時,函數(shù)有最小值4.

時,有最大值3,                   

AMN的面積SAMN·有最大值 .        …………………13分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知定義域為的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項.

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項和

 

 

查看答案和解析>>

同步練習(xí)冊答案