在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到兩點(diǎn),的距離之和等于,設(shè)點(diǎn)的軌跡為曲線(xiàn),直線(xiàn)過(guò)點(diǎn)且與曲線(xiàn)交于,兩點(diǎn).
(1)求曲線(xiàn)的軌跡方程;
(2)是否存在△面積的最大值,若存在,求出△的面積;若不存在,說(shuō)明理由.

(1)(2)的最大值為

解析試題分析:解.(Ⅰ)由橢圓定義可知,點(diǎn)的軌跡C是以,為焦點(diǎn),長(zhǎng)半軸長(zhǎng)為 的橢圓.   3分
故曲線(xiàn)的方程為.                5分
(Ⅱ)存在△面積的最大值.                   6分
因?yàn)橹本(xiàn)過(guò)點(diǎn),可設(shè)直線(xiàn)的方程為 (舍).

整理得 .            7分

設(shè)
解得 ,  

因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ec/1/1w9mv4.png" style="vertical-align:middle;" />
.       10分
設(shè),
在區(qū)間上為增函數(shù).
所以
所以,當(dāng)且僅當(dāng)時(shí)取等號(hào),即
所以的最大值為
考點(diǎn):直線(xiàn)與橢圓的位置關(guān)系
點(diǎn)評(píng):解決的關(guān)鍵是根據(jù)直線(xiàn)與橢圓的聯(lián)立方程組,結(jié)合韋達(dá)定理來(lái)表示三角形的面積,進(jìn)而結(jié)合函數(shù)的最值得到,屬于中檔題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知橢圓過(guò)點(diǎn),離心率為,左、右焦點(diǎn)分別為、.點(diǎn)為直線(xiàn)上且不在軸上的任意一點(diǎn),直線(xiàn)與橢圓的交點(diǎn)分別為、、,為坐標(biāo)原點(diǎn).設(shè)直線(xiàn)、的斜率分別為、

(i)證明:;
(ii)問(wèn)直線(xiàn)上是否存在點(diǎn),使得直線(xiàn)、、的斜率、、滿(mǎn)足?若存在,求出所有滿(mǎn)足條件的點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),)的圖象恒過(guò)定點(diǎn),橢圓
)的左,右焦點(diǎn)分別為,,直線(xiàn)經(jīng)過(guò)點(diǎn)且與⊙相切.
(1)求直線(xiàn)的方程;
(2)若直線(xiàn)經(jīng)過(guò)點(diǎn)并與橢圓軸上方的交點(diǎn)為,且,求內(nèi)切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓(a>b>0)的離心率為,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)半徑的圓與直線(xiàn)y=x+ 相切.
(1)求橢圓的方程;
(2)設(shè)直線(xiàn)與橢圓在軸上方的一個(gè)交點(diǎn)為是橢圓的右焦點(diǎn),試探究以
直徑的圓與以橢圓長(zhǎng)軸為直徑的圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
已知橢圓的左右焦點(diǎn)分別為、,由4個(gè)點(diǎn)、組成一個(gè)高為,面積為的等腰梯形.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)的直線(xiàn)和橢圓交于、兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在橢圓上找一點(diǎn),使這一點(diǎn)到直線(xiàn)的距離的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

平面直角坐標(biāo)系和極坐標(biāo)系的原點(diǎn)與極點(diǎn)重合,軸的正半軸與極軸重合,單位長(zhǎng)度相同。已知曲線(xiàn)的極坐標(biāo)方程為,曲線(xiàn)的參數(shù)方程為,射線(xiàn),,與曲線(xiàn)交于極點(diǎn)以外的三點(diǎn)A,B,C.
(1)求證:;
(2)當(dāng)時(shí),B,C兩點(diǎn)在曲線(xiàn)上,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知橢圓C:+=1(a>b>0)的左、右焦點(diǎn)分別為F、F,A是橢圓C上的一點(diǎn),AF⊥FF,O是坐標(biāo)原點(diǎn),OB垂直AF于B,且OF=3OB.

(Ⅰ)求橢圓C的離心率;
(Ⅱ)求t∈(0,b),使得命題“設(shè)圓x+y=t上任意點(diǎn)M(x,y)處的切線(xiàn)交橢圓C于Q、Q兩點(diǎn),那么OQ⊥OQ”成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C的方程為左、右焦點(diǎn)分別為F1、F2,焦距為4,點(diǎn)M是橢圓C上一點(diǎn),滿(mǎn)足
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)P(0,2)分別作直線(xiàn)PA,PB交橢圓C于A(yíng),B兩點(diǎn),設(shè)直線(xiàn)PA,PB的斜率分別為k1,k2,,求證:直線(xiàn)AB過(guò)定點(diǎn),并求出直線(xiàn)AB的斜率k的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案