函數(shù)y=f(x)在區(qū)間(0,+∞)內(nèi)可導(dǎo),導(dǎo)函數(shù)f'(x)是減函數(shù),且f′(x)>0。設(shè)x0∈(0,+∞),y=kx+m是曲線y=f(x)在點(diǎn)(x0,f(x0))的切線方程,并設(shè)函數(shù)g(x)=kx+m。
(1)用x0、f(x0)、f′(x0)表示m;
(2)證明:當(dāng)x0∈(0,+∞)時(shí),g(x)≥f(x);
(3)若關(guān)于x的不等式x2+1≥ax+b≥上恒成立,其中a、b為實(shí)數(shù),求b的取值范圍及a與b所滿足的關(guān)系。
解:(1)
(2)令

因?yàn)?IMG style="VERTICAL-ALIGN: middle" border=0 src="http://thumb.zyjl.cn/pic1/upload/papers/g02/20111110/20111110161723765914.gif">遞減,
所以遞增,
因此,當(dāng)時(shí),
當(dāng)時(shí),
所以是h(x)唯一的極值點(diǎn),且是極小值點(diǎn),
可知h(x)的最小值為0,
因此
。
(3)是不等式成立的必要條件,以下討論設(shè)此條件成立
,即對(duì)任意成立的充要條件是

另一方面,由于滿足前述題設(shè)中關(guān)于函數(shù)的條件,
利用(2)的結(jié)果可知,的充要條件是:過點(diǎn)(0,b)與曲線相切的直線的斜率大于,該切線的方程為
于是的充要條件是
綜上,不等式對(duì)任意成立的充要條件是
 ①
顯然,存在a、b使①式成立的充要條件是:不等式 ②有解
解不等式②得
因此,③式即為b的取值范圍,①式即為實(shí)數(shù)在a與b所滿足的關(guān)系。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•花都區(qū)模擬)已知函數(shù)y=f(x)在定義域[-4,6]內(nèi)可導(dǎo),其圖象如圖,記y=f(x)的導(dǎo)函數(shù)為y=f′(x),則不等式f′(x)≥0的解集為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•順義區(qū)一模)已知關(guān)于x的二次函數(shù)f(x)=ax2-4bx+1,其中a,b滿足
a+b-6≤0
a>0
b>0
則函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青浦區(qū)一模)我們把定義在R上,且滿足f(x+T)=af(x)(其中常數(shù)a,T滿足a≠1,a≠0,T≠0)的函數(shù)叫做似周期函數(shù).
(1)若某個(gè)似周期函數(shù)y=f(x)滿足T=1且圖象關(guān)于直線x=1對(duì)稱.求證:函數(shù)f(x)是偶函數(shù);
(2)當(dāng)T=1,a=2時(shí),某個(gè)似周期函數(shù)在0≤x<1時(shí)的解析式為f(x)=x(1-x),求函數(shù)y=f(x),x∈[n,n+1),n∈Z的解析式;
(3)對(duì)于確定的T>0且0<x≤T時(shí),f(x)=3x,試研究似周期函數(shù)函數(shù)y=f(x)在區(qū)間(0,+∞)上是否可能是單調(diào)函數(shù)?若可能,求出a的取值范圍;若不可能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•花都區(qū)模擬)已知函數(shù)y-f(x)在定義域[-4,6]內(nèi)可導(dǎo),其導(dǎo)函數(shù)y=f′(x)的圖象如圖,則函數(shù)y=f(x)的單調(diào)遞增區(qū)間為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•奉賢區(qū)一模)函數(shù)y=f(x),x∈R滿足f(x+1)=af(x),a是不為0的常數(shù),當(dāng)0≤x≤1時(shí),f(x)=x(1-x),
(1)若函數(shù)y=f(x),x∈R是周期函數(shù),寫出符合條件a的值;
(2)求n≤x≤n+1(n≥0,n∈Z)時(shí),求y=f(x)的表達(dá)式y(tǒng)=fn(x);
(3)若函數(shù)y=f(x)在[0,+∞)上的值域是閉區(qū)間,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案