18.已知集合A={y|y=log2x,x>1},B={x|y=$\frac{1}{\sqrt{1-2x}}$},則A∩B=( 。
A.{y|0<y<$\frac{1}{2}$}B.{y|0<y<1}C.{y|$\frac{1}{2}$<y<1}D.

分析 求出集合的等價條件,結(jié)合交集運算進行求解即可.

解答 解:A={y|y=log2x,x>1}={y|y>0},
B={x|y=$\frac{1}{\sqrt{1-2x}}$}={x|1-2x>0}={x|x<$\frac{1}{2}$},
則A∩B={y|0<y<$\frac{1}{2}$},
故選:A

點評 本題主要考查集合的基本運算,求出集合的等價條件是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)無窮等差數(shù)列{an}的前n項和為Sn,已知a1=1,S3=12.
(1)求a24與S7的值;
(2)已知m、n均為正整數(shù),滿足am=Sn.試求所有n的值構(gòu)成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若同時拋擲兩枚骰子,則向上的點數(shù)之差的絕對值為3的概率是$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在三角形ABC中,角A、B、C的對邊分別為a,b,c,a=4bcosC,$sinC=\frac{{3\sqrt{10}}}{10}$
(1)求角B 的值;
(2)若$b=\sqrt{5}$,求三角形ABC 的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,CD∥AB,AD=DC=$\frac{1}{2}$AB.
(1)若M是PB的中點,求證:CM∥平面PAD;
(2)若AD⊥AB,BC⊥PC,求證:平面PAC⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在區(qū)間(0,1)上隨機取兩個實數(shù)m,n,則關(guān)于x的一元二次方程${x^2}-2\sqrt{m}x+2n=0$有實數(shù)根的概率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在平面直角坐標(biāo)系內(nèi),區(qū)域M滿足$\left\{\begin{array}{l}0≤x≤π\(zhòng)\ 0≤y≤1\end{array}$區(qū)域N滿足$\left\{\begin{array}{l}0≤x≤π\(zhòng)\ 0≤y≤sinx\end{array}$則向區(qū)域M內(nèi)投一點,落在區(qū)域N內(nèi)的概率是( 。
A.$\frac{2}{π}$B.$\frac{π}{4}$C.2-$\frac{2}{π}$D.2-$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知A(4,1,3)、B(2,-5,1),C為線段AB上的一點,且滿足$\overrightarrow{AB}$=2$\overrightarrow{AC}$,則點C的坐標(biāo)為(3,-2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知$\overrightarrow a=(1,1)$,$\overrightarrow b=(1,0)$,則當(dāng)$|{\overrightarrow a-t\overrightarrow b}|$取最小值時,實數(shù)t=1.

查看答案和解析>>

同步練習(xí)冊答案