20.矩形ABCD中,P為矩形ABCD所在平面內(nèi)一點(diǎn),且滿足PA=3,PC=4.矩形對(duì)角線AC=6,則$\overrightarrow{PB}•\overrightarrow{PD}$=-$\frac{11}{2}$.

分析 由題意可得$\overrightarrow{PB}•\overrightarrow{PD}$=($\overrightarrow{PA}$+$\overrightarrow{AB}$)•($\overrightarrow{PA}$+$\overrightarrow{AD}$),再利用兩個(gè)向量的數(shù)量積的定義,余弦定理求得它的值.

解答 解:由題意可得$\overrightarrow{PB}•\overrightarrow{PD}$=($\overrightarrow{PA}$+$\overrightarrow{AB}$)•($\overrightarrow{PA}$+$\overrightarrow{AD}$)=${\overrightarrow{PA}}^{2}$+$\overrightarrow{PA}$•$\overrightarrow{AD}$+$\overrightarrow{AB}•\overrightarrow{PA}$+$\overrightarrow{AB}•\overrightarrow{AD}$
=9+$\overrightarrow{PA}$•($\overrightarrow{AD}$+$\overrightarrow{AB}$)+0=9+$\overrightarrow{PA}•\overrightarrow{AC}$=9+3•6•cos(π-∠PAC)=9-18•$\frac{{PA}^{2}{+AC}^{2}{-PC}^{2}}{2•PA•AC}$
=9-18•$\frac{9+36-16}{2•3•6}$=-$\frac{11}{2}$,
故答案為:$-\frac{11}{2}$.

點(diǎn)評(píng) 本題主要考查兩個(gè)向量的加減法的法則,以及其幾何意義,兩個(gè)向量的數(shù)量積的定義、余弦定理,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在空間直角坐標(biāo)系O-xyz中,點(diǎn)(3,-1,m)平面Oxy對(duì)稱點(diǎn)為(3,n,-2),則m+n=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=ln(2sinx-1)的定義域?yàn)閧x|$\frac{π}{6}$+2kπ<x<$\frac{5π}{6}$+2kπ,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若A(-2,3),B(3,-2),C(1,m)三點(diǎn)共線,則m的值為( 。
A.$\frac{1}{2}$B.-1C.-2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知二項(xiàng)式(x-$\frac{a}{\sqrt{x}}$)6的展開式中含x${\;}^{\frac{3}{2}}$項(xiàng)的系數(shù)為20,則${∫}_{a}^{1}(\sqrt{1-{x}^{2}})dx$=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.定義在R上的函數(shù)f(x)對(duì)任意x1,x2(x1≠x2)都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$,函數(shù)f(x-1)的圖象關(guān)于(1,0)成中心對(duì)稱,如果實(shí)數(shù)m,n滿足不等式f(m2-6m+21)+f(n2-8n)<0,那么m2+n2的取值范圍是( 。
A.(9,49)B.(13,49)C.(9,25)D.(3,7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,等腰△ABC中,AB=BC=5,AC=6,點(diǎn)E,F(xiàn)分別在AB,BC上,AE=CF=$\frac{5}{4}$,O為AC邊上的中點(diǎn),EF交BO于點(diǎn)H,將△BEF沿EF折到△B′EF的位置,OB′=$\sqrt{10}$.
(1)證明:B′H⊥平面ABC;
(2)求二面角B-B′A-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.曲線$\sqrt{2}$ρ=4sin(x+$\frac{π}{4}$)與曲線$\left\{\begin{array}{l}{x=\frac{1}{2}-\frac{\sqrt{2}}{2}t}\\{y=\frac{1}{2}+\frac{\sqrt{2}}{2}t}\end{array}\right.$的位置關(guān)系是( 。
A.相交過圓心B.相交C.相切D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.滿足條件|z-i|+|z+i|=4的復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)點(diǎn)的軌跡是( 。
A.一條直線B.兩條直線C.D.橢圓

查看答案和解析>>

同步練習(xí)冊(cè)答案