下列關(guān)于函數(shù)y=sinx,x∈[-π,π]的單調(diào)性的敘述,正確的是( 。
A、在[-π,0]上是增函數(shù),在[0,π]上是減函數(shù)
B、在[-
π
2
,
π
2
]
上是增函數(shù),在[-π,-
π
2
]及[
π
2
,π]上是減函數(shù)
C、在[0,π]上是增函數(shù),在[-π,0]上是減函數(shù)
D、在[
π
2
,π]及[-π,-
π
2
]上是增函數(shù),在[-
π
2
,
π
2
]
上是減函數(shù)
分析:根據(jù)正弦函數(shù)的圖象與性質(zhì),我們根據(jù)正弦函數(shù)的單調(diào)性,我們易判斷出函數(shù)y=sinx,x∈[-π,π]的單調(diào)性,比照題目中的四個(gè)答案后,即可得到結(jié)論.
解答:解:對(duì)于函數(shù)y=sinx,x∈[-π,π]
我們易得其在x=-
π
2
時(shí),函數(shù)取最小值,當(dāng)x=
π
2
時(shí),函數(shù)取最大值,
故函數(shù)在[-
π
2
,
π
2
]
上是增函數(shù),在[-π,-
π
2
]及[
π
2
,π]上是減函數(shù)
故選B
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是正弦函數(shù)的單調(diào)性,熟練掌握正弦函數(shù)的圖象和性質(zhì)是解答本題的關(guān)鍵,屬于基礎(chǔ)題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列對(duì)于函數(shù)y=sinx+cosx的命題中,正確命題的序號(hào)為
 

①存在α∈(0,
π
2
)
,使f(α)=
4
3
;②存在α∈(0,
π
2
)
,使f(x+α)=f(x+3α);③存在θ∈R使函數(shù)f(x+θ)的圖象關(guān)于y軸對(duì)稱;④函數(shù)f(x)的圖象關(guān)于點(diǎn)(
3
4
π,0)
對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

下列關(guān)于函數(shù)y=sinx,x∈[-π,π]的單調(diào)性的敘述,正確的是


  1. A.
    在[-π,0]上是增函數(shù),在[0,π]上是減函數(shù)
  2. B.
    數(shù)學(xué)公式上是增函數(shù),在[-π,-數(shù)學(xué)公式]及[數(shù)學(xué)公式,π]上是減函數(shù)
  3. C.
    在[0,π]上是增函數(shù),在[-π,0]上是減函數(shù)
  4. D.
    在[數(shù)學(xué)公式,π]及[-π,-數(shù)學(xué)公式]上是增函數(shù),在數(shù)學(xué)公式上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列關(guān)于函數(shù)y=sinx,x∈[-π,π]的單調(diào)性的敘述,正確的是( 。
A.在[-π,0]上是增函數(shù),在[0,π]上是減函數(shù)
B.在[-
π
2
,
π
2
]
上是增函數(shù),在[-π,-
π
2
]及[
π
2
,π]上是減函數(shù)
C.在[0,π]上是增函數(shù),在[-π,0]上是減函數(shù)
D.在[
π
2
,π]及[-π,-
π
2
]上是增函數(shù),在[-
π
2
,
π
2
]
上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年高三(上)數(shù)學(xué)寒假作業(yè)(文科)(解析版) 題型:填空題

下列對(duì)于函數(shù)y=sinx+cosx的命題中,正確命題的序號(hào)為    
①存在,使;②存在,使f(x+α)=f(x+3α);③存在θ∈R使函數(shù)f(x+θ)的圖象關(guān)于y軸對(duì)稱;④函數(shù)f(x)的圖象關(guān)于點(diǎn)對(duì)稱.

查看答案和解析>>

同步練習(xí)冊(cè)答案