【題目】如圖,在四棱錐S﹣ABCD中,AB⊥AD,AB∥CD,CD=3AB,平面SAD⊥平面ABCD,M是線段AD上一點,AM=AB,DM=DC,SM⊥AD. (Ⅰ)證明:BM⊥平面SMC;
(Ⅱ)若SB與平面ABCD所成角為 ,N為棱SC上的動點,當(dāng)二面角S﹣BM﹣N為 時,求 的值.
【答案】解:(Ⅰ)證明:∵平面SAD⊥平面ABCD,SM⊥AD ∴SM⊥平面ABCD,又BM平面ABCD
∴SM⊥BM
又AM=AB,DM=DC
∴∠BMA=∠DMC= ,
∴∠BMC= ,即CM⊥BM,
又SM平面SMC,MC平面SMC,SM∩MC=M,
∴BM⊥平面SMC.
(Ⅱ)∵SM⊥平面ABCD,∴∠SBM為SB與平面ABCD所成的角,
∴∠SBM= .∴SM=BM.
由(1)得BM⊥平面SMC,∵M(jìn)N平面SMC,
∴BM⊥MN,又BM⊥SM,
∴∠SMN為二面角S﹣BM﹣N的平面角.即∠SMN= .
設(shè)AB=1,則SM=BM= ,DM=DC=3,∴MC=3 .
∴SC= =2 .sin∠MSN= .cos∠MSN= .
∴sin∠SNM=sin(∠MSN+∠SMN)= = .
在△SMN中,由正弦定理得 = ,
∴SN= = .
∴ ,∴ .
【解析】(I)利用平面幾何知識證明BM⊥MC,結(jié)合SM⊥平面ABCD可得SM⊥BM,于是BM⊥平面SMC;(II)設(shè)AB=1,利用∠SBM= ,∠SMN= 可求出SM,SC,在△SMN中使用正弦定理求出SN,即可得出 的值.
【考點精析】掌握直線與平面垂直的判定是解答本題的根本,需要知道一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某普通高中為了了解學(xué)生的視力狀況,隨機(jī)抽查了100名高二年級學(xué)生和100名高三年級學(xué)生,對這些學(xué)生配戴眼鏡的度數(shù)(簡稱:近視度數(shù))進(jìn)行統(tǒng)計,得到高二學(xué)生的頻數(shù)分布表和高三學(xué)生頻率分布直方圖如下:
近視度數(shù) | 0﹣100 | 100﹣200 | 200﹣300 | 300﹣400 | 400以上 |
學(xué)生頻數(shù) | 30 | 40 | 20 | 10 | 0 |
將近視程度由低到高分為4個等級:當(dāng)近視度數(shù)在0﹣100時,稱為不近視,記作0;當(dāng)近視度數(shù)在100﹣200時,稱為輕度近視,記作1;當(dāng)近視度數(shù)在200﹣400時,稱為中度近視,記作2;當(dāng)近視度數(shù)在400以上時,稱為高度近視,記作3.
(1)從該校任選1名高二學(xué)生,估計該生近視程度未達(dá)到中度及以上的概率;
(2)設(shè)a=0.0024,從該校任選1名高三學(xué)生,估計該生近視程度達(dá)到中度或中度以上的概率;
(3)把頻率近似地看成概率,用隨機(jī)變量X,Y分別表示高二、高三年級學(xué)生的近視程度,若EX=EY,求b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為,( 為參數(shù)).
(1)將兩曲線化成普通坐標(biāo)方程;
(2)求兩曲線的公共弦長及公共弦所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如表:
商店名稱 | A | B | C | D | E |
銷售額x/千萬元 | 3 | 5 | 6 | 7 | 9 |
利潤額y/百萬元 | 2 | 3 | 3 | 4 | 5 |
(1)畫出銷售額和利潤額的散點圖;
(2)若銷售額和利潤額具有相關(guān)關(guān)系,用最小二乘法計算利潤額y對銷售額x的回歸直線方程;
(3)據(jù)(2)的結(jié)果估計當(dāng)銷售額為1億元時的利潤額.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為選拔參加“央視猜燈謎大賽”的隊員,在校內(nèi)組織猜燈謎競賽.規(guī)定:第一階段知識測試成績不小于分的學(xué)生進(jìn)入第二階段比賽.現(xiàn)有名學(xué)生參加知識測試,并將所有測試成績繪制成如下所示的頻率分布直方圖.
(1)估算這名學(xué)生測試成績的中位數(shù),并求進(jìn)入第二階段比賽的學(xué)生人數(shù);
(2)將進(jìn)入第二階段的學(xué)生分成若干隊進(jìn)行比賽.現(xiàn)甲、乙兩隊在比賽中均已獲得分,進(jìn)入最后強(qiáng)答階段.搶答規(guī)則:搶到的隊每次需猜條謎語,猜對條得分,猜錯條扣分.根據(jù)經(jīng)驗,甲隊猜對每條謎語的概率均為,乙隊猜對每條謎語的概率均為,猜對第條的概率均為.若這兩條搶到答題的機(jī)會均等,您做為場外觀眾想支持這兩隊中的優(yōu)勝隊,會把支持票投給哪隊?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x2﹣ax,g(x)=lnx,h(x)=f(x)+g(x)
(1)若f(x)≥g(x)對于公共定義域內(nèi)的任意x恒成立,求實數(shù)a的取值范圍;
(2)設(shè)h(x)有兩個極值點x1 , x2 , 且x1∈(0, ),若h(x1)﹣h(x2)>m恒成立,求實數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體EF﹣ABCD中,CDEF為邊長為2的正方形,ABCD為直角梯形,AB∥CD,AD⊥DC,AD=2,AB=4,∠ADF=90°.
(Ⅰ)求證:AC⊥FB
(Ⅱ)求二面角E﹣FB﹣C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對二次函數(shù)f(x)=ax2+bx+c(a為非零整數(shù)),四位同學(xué)分別給出下列結(jié)論,其中有且只有一個結(jié)論是錯誤的,則錯誤的結(jié)論是( )
A.﹣1是f(x)的零點
B.1是f(x)的極值點
C.3是f(x)的極值
D.點(2,8)在曲線y=f(x)上
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{bn}滿足bn=3bn﹣1+2(n≥2),b1=1.?dāng)?shù)列{an}的前n項和為Sn , 滿足Sn=4an+2
(1)求證:{bn+1}是等比數(shù)列并求出數(shù)列{bn}的通項公式;
(2)求數(shù)列{an}的通項公式和前n項和公式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com