解答:解:∵函數(shù)f(x)=x(x-9)
2=x
3-18x
2+81x
∴f′(x)=3x
2-36x+81=3(x-9)(x-3),x∈[0,+∞),
∴當(dāng)x∈[0,3]時f′(x)≥0,則函數(shù)在[0,3]上單調(diào)遞增
當(dāng)x∈[3,9]時f′(x)<0,則函數(shù)在[3,9]上單調(diào)遞減
當(dāng)x∈(9,+∞)時f′(x)>0,則函數(shù)在(9,+∞)上單調(diào)遞增
∴當(dāng)x=3時,函數(shù)取極大值108,當(dāng)x=9時,函數(shù)取極小值0.
(1)當(dāng)a,b∈[0,3]時,f(x)在[0,3]上為增函數(shù),
∴
| f(a)=a(a-9)2=ka | f(b)=b(b-9)2=kb |
| |
即在[0,3]上存在兩個不等的實(shí)數(shù)使得(x-9)
2=k
而y=(x-9)
2在[0,3]上單調(diào)遞減,故不存在滿足條件的k值;
(2)當(dāng)a,b∈[3,9]時,f(x)在[3,9]上為減函數(shù),
∴
| f(a)=a(a-9)2=kb | f(b)=b(b-9)2=ka |
| |
即a=b,此時實(shí)數(shù)a,b的值不存在.
(3)當(dāng)a,b∈(9,+∞)時,f(x)在(9,+∞)上為增函數(shù),
∴
| f(a)=a(a-9)2=ka | f(b)=b(b-9)2=kb |
| |
即在(9,+∞)上存在兩個不等的實(shí)數(shù)使得(x-9)
2=k
而y=(x-9)
2在(9,+∞)上單調(diào)遞增,故不存在滿足條件的k值;
(4)當(dāng)a∈[0,3),b∈[3,9]時,3∈[a,b],f(3)=108=kb
∴k=
∈[12,36]
(5)當(dāng)a∈(3,9),b∈[9,+∞)時,9∈[a,b],f(9)=0=ka
根據(jù)題意可知k>0
∴a=0,不可能成立
(6)令f(x)=x(x-9)
2=108解得x=3或12
令f(x)=x(x-9)
2=0解得x=0或9
①當(dāng)a∈[0,3),b∈[9,12)時,
9∈[a,b],f(9)=0=ka,3∈[a,b],f(3)=108=kb
根據(jù)題意可知k>0
∴a=0,k=
∈[9,12]
②當(dāng)a∈[0,3),b∈[12,+∞)時,
9∈[a,b],f(9)=0=ka,
根據(jù)題意可知k>0
∴a=0,
且f(b)=b(b-9)
2=kb
k=(b-9)
2≥9
綜上所述:k∈[9,+∞)
故最小的k值為9
故選B.