17.三角形ABC中,cosB=$\frac{3}{5}$,a=7,$\overrightarrow{AB}$•$\overrightarrow{BC}$=-21,則角C=$\frac{π}{4}$.

分析 利用平面向量的數(shù)量積公式計(jì)算c,使用余弦定理計(jì)算b,再使用余弦定理求出cosC.

解答 解:∵$\overrightarrow{AB}$•$\overrightarrow{BC}$=c•a•cos(π-B)=7×c×(-$\frac{3}{5}$)=-21,
∴c=5.
三角形ABC中,由余弦定理得cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{49+25-^{2}}{70}$=$\frac{3}{5}$,
∴b=4$\sqrt{2}$.
∴cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{49+32-25}{2×7×4\sqrt{2}}$=$\frac{\sqrt{2}}{2}$.
∴C=$\frac{π}{4}$.
故答案為:$\frac{π}{4}$.

點(diǎn)評 本題考查了平面向量的數(shù)量積運(yùn)算,余弦定理解三角形,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.用數(shù)字0,1,2,3,4,5組成沒有重復(fù)數(shù)字的四位數(shù).
(1)可組成多少個不同的四位數(shù)?
(2)可組成多少個不同的偶數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知Sn是公差不為0的等差數(shù)列{an}的前n項(xiàng)和,且S1,S2,S4成等比數(shù)列,則$\frac{{a}_{2}+{a}_{5}}{{a}_{1}+{a}_{3}}$等于(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知{an}是等差數(shù)列,其前n項(xiàng)和為Sn,{bn}為公比大于零的等比數(shù)列,若b1=a1=1,b2=5-a2,b3=S3-a3
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)定義E(an)=$\frac{{{a_1}+{a_2}+…+{a_n}}}{n}$是數(shù)列{an}的前n項(xiàng)的數(shù)學(xué)期望,若E(bn)≥t-$\frac{1}{{E({a_n})}}$對任意的n∈N+恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12.
(1)求數(shù)列{an}的通項(xiàng)公式; 
(2)令bn=3${\;}^{\frac{a_n}{2}}}$,求數(shù)列{bn}前n項(xiàng)和的公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.曲線y=x•sinx在點(diǎn)M(π,0)處的切線方程是πx+y-π2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.張山炒股某次按平均價格5.32元每股購入10000股XX股票,并且當(dāng)天該股收盤價也是5.32元.從第二天起該股連續(xù)三個交易日漲停(漲10%為漲停),并且張山在第三個漲停板上全部賣出了持有的10000股股票,已知每次買賣交易要按賣出總金額的1%收取印花稅和券商傭金,請估算張山在該次交易中獲利多少元(精確到元)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.當(dāng)兩個集合有公共元素,且互不為對方的子集時,我們稱這兩個集合“相交”,對于集合M={x|ax2-1=0,a>0},N={-$\frac{1}{2}$,$\frac{1}{2}$,1},若M與N“相交”,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=ex+ae-x的導(dǎo)函數(shù)f′(x)是偶函數(shù),若|f(x)|≥mx,則m的取值范圍是[-2,2].

查看答案和解析>>

同步練習(xí)冊答案