【題目】已知F1 , F2分別是橢圓C: (a>b>0)的兩個(gè)焦點(diǎn),P(1, )是橢圓上一點(diǎn),且 |PF1|,|F1F2|, |PF2|成等差數(shù)列.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知?jiǎng)又本l過(guò)點(diǎn)F2 , 且與橢圓C交于A,B兩點(diǎn),試問(wèn)x軸上是否存在定點(diǎn)Q,使得 =﹣ 恒成立?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)解:∵ |PF1|,|F1F2|, |PF2|成等差數(shù)列,
∴ |PF1|+ |PF2|=2|F1F2|,即2 a=4c,∴a= c.
∴ ,解得 .
∴橢圓方程為
(2)解:假設(shè)在x軸上存在點(diǎn)Q(m,0),使得 恒成立.
①當(dāng)直線l的斜率為0時(shí),A(﹣ ,0),B( ,0).
∴ =(﹣ ﹣m,0), =( ﹣m,0).
∴ =m2﹣2=﹣ ,解得 或m=﹣ .
②若直線l斜率不為0,設(shè)直線AB的方程為x=ty+1.
聯(lián)立方程組 ,消元得:(t2+2)y2+2ty﹣1=0.
設(shè)A(x1,y1),B(x2,y2),則y1+y2=﹣ ,y1y2=﹣ .
∴x1+x2=t(y1+y2)+2= ,
x1x2=(ty1+1)(ty2+1)=t2y1y2+t(y1+y2)+1= .
∵ =(x1﹣m,y1), =(x2﹣m,y2).
∴ =(x1﹣m)(x2﹣m)+y1y2=x1x2﹣m(x1+x2)+m2+y1y2
= ﹣ +m2﹣ = =﹣ .
∴ ,解得m= .
綜上,Q點(diǎn)坐標(biāo)為( ,0)
【解析】
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】各項(xiàng)均為正數(shù)的數(shù)列{bn}的前n項(xiàng)和為Sn , 且對(duì)任意正整數(shù)n,都有2Sn=bn(bn+1).
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)如果等比數(shù)列{an}共有2015項(xiàng),其首項(xiàng)與公比均為2,在數(shù)列{an}的每相鄰兩項(xiàng)ak與ak+1之間插入k個(gè)(﹣1)kbk(k∈N*)后,得到一個(gè)新的數(shù)列{cn}.求數(shù)列{cn}中所有項(xiàng)的和;
(3)如果存在n∈N* , 使不等式 成立,求實(shí)數(shù)λ的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)C為圓(x+1)2+y2=8的圓心,P是圓上的動(dòng)點(diǎn),點(diǎn)Q在圓的半徑CP上,且有點(diǎn)A(1,0)和AP上的點(diǎn)M,滿足 =0, =2 .
(1)當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)Q的軌跡方程;
(2)若斜率為k的直線 l與圓x2+y2=1相切,直線 l與(1)中所求點(diǎn)Q的軌跡交于不同的兩點(diǎn)F,H,O是坐標(biāo)原點(diǎn),且 ≤ ≤ 時(shí),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)D是函數(shù)y=f(x)定義域內(nèi)的一個(gè)區(qū)間,若存在x0∈D,使f(x0)=﹣x0 , 則稱x0是f(x)的一個(gè)“次不動(dòng)點(diǎn)”,也稱f(x)在區(qū)間D上存在次不動(dòng)點(diǎn).若函數(shù)f(x)=ax2﹣3x﹣a+ 在區(qū)間[1,4]上存在次不動(dòng)點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞,0)
B.(0, )
C.[ ,+∞)
D.(﹣∞, ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)定義在區(qū)間[﹣m,m]上的函數(shù)f(x)=log2 是奇函數(shù),且f(﹣ )≠f( ),則nm的范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市隨機(jī)抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)API的監(jiān)測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下:
API | [0,100] | (100,200] | (200,300] | >300 |
空氣質(zhì)量 | 優(yōu)良 | 輕污染 | 中度污染 | 重度污染 |
天數(shù) | 17 | 45 | 18 | 20 |
記某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失S(單位:元),空氣質(zhì)量指數(shù)API為.當(dāng)時(shí),企業(yè)沒(méi)有造成經(jīng)濟(jì)損失;當(dāng)對(duì)企業(yè)造成經(jīng)濟(jì)損失成直線模型(當(dāng)時(shí)造成的經(jīng)濟(jì)損失為,當(dāng)時(shí),造成的經(jīng)濟(jì)損失);當(dāng)時(shí)造成的經(jīng)濟(jì)損失為2000元;
(1)試寫出的表達(dá)式;
(2)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有12天為重度污染,完成下面2×2列聯(lián)表,并判斷能否有99%的把握認(rèn)為該市本年空氣重度污染與供暖有關(guān)?
非重度污染 | 重度污染 | 合計(jì) | |
供暖季 | |||
非供暖季 | |||
合計(jì) | 100 |
P(k2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市理論預(yù)測(cè)2010年到2014年人口總數(shù)與年份的關(guān)系如下表所示
年份2010+x(年) | 0 | 1 | 2 | 3 | 4 |
人口數(shù)y(十萬(wàn)) | 5 | 7 | 8 | 11 | 19 |
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2) 據(jù)此估計(jì)2015年該城市人口總數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某跳水運(yùn)動(dòng)員在一次跳水訓(xùn)練時(shí)的跳水曲線為如圖所示拋物線的一段.已知跳水板長(zhǎng)為,跳水板距水面的高為.為安全和空中姿態(tài)優(yōu)美,訓(xùn)練時(shí)跳水曲線應(yīng)在離起跳點(diǎn)處水平距時(shí)達(dá)到距水面最大高度,規(guī)定:以為橫軸,為縱軸建立直角坐標(biāo)系.
(1)當(dāng)時(shí),求跳水曲線所在的拋物線方程;
(2)若跳水運(yùn)動(dòng)員在區(qū)域內(nèi)入水時(shí)才能達(dá)到比較好的訓(xùn)練效果,求此時(shí)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)y=sin(x+ )的圖象上各點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的 倍(縱坐標(biāo)不變),所得函數(shù)在下面哪個(gè)區(qū)間單調(diào)遞增( )
A.(﹣ , )
B.(﹣ , )
C.(﹣ , )
D.(﹣ , )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com