(本小題滿分14分)
已知是定義在R上的奇函數(shù),且,求:
(1)的解析式。   
(2)已知,求函數(shù)在區(qū)間上的最小值。

(1)
(2) 。

解析試題分析:1)

…………4分

(2)
開口向上且關于x=2對稱…………7分



         …………14分
考點:本題主要考查分段函數(shù)的概念,函數(shù)的奇偶性,二次函數(shù)的圖象和性質
點評:典型題,首先利用函數(shù)的奇偶性,求得函數(shù)表達式,對二次函數(shù)在閉區(qū)間的最值情況進行研究,屬于“定軸動區(qū)間問題”。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
設函數(shù)滿足:對任意的實數(shù)
(Ⅰ)求的解析式;
(Ⅱ)若方程有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題12分)已知函數(shù)
⑴若函數(shù)的圖象過原點,且在原點處的切線斜率是,求的值;
⑵若函數(shù)在區(qū)間上不單調,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分18分)如果函數(shù)的定義域為,對于定義域內的任意,存在實數(shù)使得成立,則稱此函數(shù)具有“性質”.
(1)判斷函數(shù)是否具有“性質”,若具有“性質”求出所有的值;若不具有“性質”,請說明理由.
(2)已知具有“性質”,且當,求上的最大值.
(3)設函數(shù)具有“性質”,且當時,.若交點個數(shù)為2013個,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知函數(shù)
(1) 求a的值;
(2) 證明的奇偶性;
(3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題13分)已知函數(shù)。
(Ⅰ)若,試判斷并證明的單調性;
(Ⅱ)若函數(shù)上單調,且存在使成立,求的取值范圍;
(Ⅲ)當時,求函數(shù)的最大值的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),且
(1)若函數(shù)是偶函數(shù),求的解析式;(3分)
(2)在(1)的條件下,求函數(shù)上的最大、最小值;(3分)
(3)要使函數(shù)上是單調函數(shù),求的范圍。(4分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(10分)設是定義在上的單調增函數(shù),滿足,
,
求(1)
(2)若,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)已知函數(shù)
(1)當的取值范圍;
(2)是否存在這樣的實數(shù),使得函數(shù)在區(qū)間上為減函數(shù),且最大值為1,若存在,求出值;若不存在,說明理由。

查看答案和解析>>

同步練習冊答案