【題目】已知,是雙曲線的左、右焦點(diǎn),點(diǎn)P為上異于頂點(diǎn)的點(diǎn),直線l分別與以,為直徑的圓相切于A,B兩點(diǎn),若向量,的夾角為,則=___________.
【答案】
【解析】
首先將圖象畫出來,設(shè)以PF1,PF2為直徑的圓的圓心分別為C,D,連接AC,BD,過D作DE⊥AC于點(diǎn)E,連接CD,易證四邊形ABDE是矩形,根據(jù)幾何關(guān)系可得|CE|===5,由可得,又向量的夾角即為的夾角,從而.
如圖,設(shè)以PF1,PF2為直徑的圓的圓心分別為C,D,連接AC,BD,
過D作DE⊥AC于點(diǎn)E,連接CD,則,
因?yàn)橹本AB是圓C和圓D的公切線,且切點(diǎn)分別是A,B,
所以AC⊥AB,BD⊥AB,則四邊形ABDE是矩形,所以|AB|=|DE|,|AE|=|BD|.
且,,易知|CE|=|AC|-|AE|=|AC|-|BD|=,
根據(jù)雙曲線的定義知,|PF1|-|PF2|=10,所以|CE|=5.
因?yàn)?/span>,由|可得,
即|AB|=3,因?yàn)橄蛄?/span>的夾角即為的夾角,
所以.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為是上一點(diǎn).
(1)求橢圓的方程;
(2)設(shè)是分別關(guān)于兩坐標(biāo)軸及坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn),平行于的直線交于異于的兩點(diǎn).點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為.證明:直線與軸圍成的三角形是等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體的底面為正方形,,,,,是棱的中點(diǎn),平面與直線相交于點(diǎn).
(1)證明:直線平面;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)的圖象的一個(gè)最高點(diǎn)為(),與之相鄰的一個(gè)對(duì)稱中心為,將f(x)的圖象向右平移個(gè)單位長度得到函數(shù)g(x)的圖象,則( )
A.g(x)為偶函數(shù)
B.g(x)的一個(gè)單調(diào)遞增區(qū)間為
C.g(x)為奇函數(shù)
D.函數(shù)g(x)在上有兩個(gè)零點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為提高產(chǎn)品質(zhì)量,某企業(yè)質(zhì)量管理部門經(jīng)常不定期地對(duì)產(chǎn)品進(jìn)行抽查檢測,現(xiàn)對(duì)某條生產(chǎn)線上隨機(jī)抽取的100個(gè)產(chǎn)品進(jìn)行相關(guān)數(shù)據(jù)的對(duì)比,并對(duì)每個(gè)產(chǎn)品進(jìn)行綜合評(píng)分(滿分100分),將每個(gè)產(chǎn)品所得的綜合評(píng)分制成如圖所示的頻率分布直方圖.記綜合評(píng)分為80分及以上的產(chǎn)品為一等品.
(1)求圖中的值,并求綜合評(píng)分的中位數(shù);
(2)用樣本估計(jì)總體,視頻率作為概率,在該條生產(chǎn)線中隨機(jī)抽取3個(gè)產(chǎn)品,求所抽取的產(chǎn)品中一等品數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南北朝時(shí)代的偉大科學(xué)家祖暅在數(shù)學(xué)上有突出貢獻(xiàn),他在實(shí)踐的基礎(chǔ)上提出祖暅原理:“冪勢(shì)既同,則積不容異”.其含義是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平行平面的任意平面所截,如果截得的兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等,如圖,夾在兩個(gè)平行平面之間的兩個(gè)幾何體的體積分別為,,被平行于這兩個(gè)平面的任意平面截得的兩個(gè)截面面積分別為、,則“、不總相等”是“,不相等”的( )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線C:()的焦點(diǎn)為
(1)動(dòng)直線l過F點(diǎn)且與拋物線C交于M,N兩點(diǎn),點(diǎn)M在y軸的左側(cè),過點(diǎn)M作拋物線C準(zhǔn)線的垂線,垂足為M1,點(diǎn)E在上,且滿足連接并延長交y軸于點(diǎn)D,的面積為,求拋物線C的方程及D點(diǎn)的縱坐標(biāo);
(2)點(diǎn)H為拋物線C準(zhǔn)線上任一點(diǎn),過H作拋物線C的兩條切線,,切點(diǎn)為A,B,證明直線過定點(diǎn),并求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),記函數(shù),若函數(shù)至少有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com