11.在棱長為2的正方體ABCD-A1B1C1D1中,異面直線AB和CC1的距離為2.

分析 由題意,異面直線AB和CC1的距離為BC,即可得出結(jié)論.

解答 解:由題意,異面直線AB和CC1的距離為BC=2.
故答案為:2.

點(diǎn)評(píng) 本題是基礎(chǔ)題,考查正方體中異面直線的距離的求法,考查空間想象能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在多面體ABCDM中,△BCD是等邊三角形,△CMD是等腰直角三角形,
∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD.
(Ⅰ)求證:CD⊥AM;
(Ⅱ)若AM=BC=2,
(1)求直線AM與平面BDM所成角的正弦值.
(2)求二面角B-AD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列命題中正確的是(  )
A.若β=α+k•360°(k∈Z),則α與β終邊相同B.第二象限角一定是鈍角
C.終邊在y軸正半軸上的角是直角D.第四象限角一定是負(fù)角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.過點(diǎn)(3,4)的圓(x-1)2+(y-2)2=8的切線一般式方程是x-y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)已知cos(π+α)=-$\frac{1}{2}$,α為第一象限角,求cos($\frac{π}{2}$+α)的值.
(2)已知cos($\frac{π}{6}$-α)=$\frac{1}{3}$,求cos($\frac{5π}{6}$+α)•sin($\frac{2π}{3}$-α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=xlnx,則f'(e)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,棱長為2的正方形ABCD-A1B1C1D1中,E是棱B1C1的中點(diǎn),動(dòng)點(diǎn)P在底面ABCD內(nèi),且PA1=A1E,則點(diǎn)P運(yùn)動(dòng)形成圖形的長度是( 。
A.1B.$\frac{π}{2}$C.$\sqrt{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知在平面直角坐標(biāo)系xOy中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為F(-$\sqrt{3}$,0),長軸長為4,設(shè)點(diǎn)A(3,4).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若P是橢圓上的動(dòng)點(diǎn),求線段PA中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知x1,x2是函數(shù)f(x)=e-x-|lnx|的兩個(gè)不同零點(diǎn),則x1x2的取值范圍是(  )
A.(0,$\frac{1}{e}$)B.($\frac{1}{e}$,1]C.(1,e)D.($\frac{1}{e}$,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案