(本題滿分12分)
在平面直角坐標(biāo)系xOy中,曲線與坐標(biāo)軸的交點都在圓C上。
(Ⅰ)求圓C的方程;
(Ⅱ)若圓C被直線截得的弦長為,求的值。
(1);(Ⅱ)。
【解析】本試題主要是考查了圓的一般方程的求解,以及直線與圓相交的位置關(guān)系的綜合運用。
(1)因為曲線與坐標(biāo)軸的交點為,代入一般式中可知結(jié)論。
(2)由(1)知圓心坐標(biāo)為(-1,-1),半徑為
則圓心到直線的距離為,從而得到弦長的求解。
解:(1)曲線與坐標(biāo)軸的交點為……………………2分
設(shè)圓方程為,則:
……………………..5分
……………………6分
(Ⅱ)由(1)知圓心坐標(biāo)為(-1,-1),半徑為………………8分
則圓心到直線的距離為……………….10分
由勾股定理知 解得……………….12分
科目:高中數(shù)學(xué) 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)已知數(shù)列是首項為,公比的等比數(shù)列,,
設(shè),數(shù)列.
(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)(,為常數(shù)),且方程有兩個實根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角中,四邊形是邊長為的正方形,,為上的點,且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求點到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com