【題目】如圖所示是某企業(yè)2010年至2016年污水凈化量(單位: 噸)的折線圖.

注: 年份代碼1-7分別對(duì)應(yīng)年份2010-2016.

(1)由折線圖看出,可用線性回歸模型擬合的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;

(2)建立關(guān)于的回歸方程,預(yù)測(cè)年該企業(yè)污水凈化量;

(3)請(qǐng)用數(shù)據(jù)說明回歸方程預(yù)報(bào)的效果.

附注: 參考數(shù)據(jù):;

參考公式:相關(guān)系數(shù),回歸方程中斜率和截距的最小;

二乘法估汁公式分別為;

反映回歸效果的公式為:,其中越接近于,表示回歸的效果越好.

【答案】(1) 見解析;(2) 預(yù)測(cè)年該企業(yè)污水凈化量約為噸;(3) 回歸方程預(yù)測(cè)的效果是良好的.

【解析】試題分析:(1)先求,再將折線圖中的數(shù)據(jù)代入?yún)⒖脊娇傻孟嚓P(guān)系數(shù),最后根據(jù)數(shù)值進(jìn)行判斷相關(guān)性, (2) 將折線圖中的數(shù)據(jù)代入?yún)⒖脊娇傻?/span>,再根據(jù)線性回歸方程恒過,解出,最后求所對(duì)應(yīng)函數(shù)值(3) 將折線圖中的數(shù)據(jù)代入?yún)⒖脊娇傻?/span>,再根據(jù)數(shù)據(jù)說明預(yù)測(cè)的效果.

試題解析:(1) 由折線圖中的數(shù)據(jù)和附注中的參考數(shù)據(jù)得,

,所以.因?yàn)?/span>的相關(guān)系數(shù)近似為,說明的線性相關(guān)程度相當(dāng)大,從而可以用線性回歸模型擬合的關(guān)系.

(2) 由及(1)得,

所以關(guān)于的回舊方程為: , 將年對(duì)應(yīng)的代入得,

所以預(yù)測(cè)年該企業(yè)污水凈化量約為噸.

(3) 因?yàn)?/span>,所以“污水凈化量的差異” 有是由年份引起的,這說明回歸方程預(yù)測(cè)的效果是良好的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)

某公司經(jīng)銷某產(chǎn)品,第的銷售價(jià)格為為常數(shù))(元件),第天的銷售量為(件),且公司在第天該產(chǎn)品的銷售收入為元.

(1)求該公司在第天該產(chǎn)品的銷售收入是多少?

(2)天中該公司在哪一天該產(chǎn)品的銷售收入最大?最大收入為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017銀川一中模擬】如圖,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=CD=1.現(xiàn)以AD為一邊向梯形外作矩形ADEF,然后沿邊AD將矩形ADEF翻折,使平面ADEF與平面ABCD垂直.

(1)求證:BC⊥平面BDE;

(2)若點(diǎn)D到平面BEC的距離為,求三棱錐F-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù)

(1)當(dāng)時(shí),求上的單調(diào)區(qū)間;

(2)設(shè)函數(shù),當(dāng)有兩個(gè)極值點(diǎn)時(shí),總有,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,對(duì)任意實(shí)數(shù),都有.

(1)若 ,且,求, 的值;

(2)若為常數(shù),函數(shù)是奇函數(shù),

①驗(yàn)證函數(shù)滿足題中的條件;

②若函數(shù)求函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

喜愛打籃球

不喜愛打籃球

合計(jì)

男生

5

女生

10

合計(jì)

50

已知在全部50人中隨機(jī)抽取1人抽到喜愛打籃球的學(xué)生的概率為

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

(2)是否有99%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了實(shí)現(xiàn)60萬元的生源利潤(rùn)目標(biāo),準(zhǔn)備制定一個(gè)激勵(lì)招生人員的獎(jiǎng)勵(lì)方案:在生源利潤(rùn)達(dá)到5萬元時(shí),按生源利潤(rùn)進(jìn)行獎(jiǎng)勵(lì),且資金y(單位:萬元)隨生源利潤(rùn)x(單位:萬元)的增加而增加,但資金總數(shù)不超過3萬元,同時(shí)獎(jiǎng)金不超過利潤(rùn)的20%.現(xiàn)有三個(gè)獎(jiǎng)勵(lì)模型:y=0.2x,y=log5xy=1.02x,其中哪個(gè)模型符合該校的要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PC底面ABCD,底面ABCD是直角梯形,ABADABCDAB2AD2CD2,EPB的中點(diǎn).

(1)求證:平面EAC平面PBC;

(2)若二面角PACE的余弦值為,求直線PA與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) 處取得極值.

1)求 的單調(diào)區(qū)間;

2)若 在定義域內(nèi)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案