已知直線l的參數(shù)方程為
x=
3
+
1
2
t
y=7+
3
2
t
(t為參數(shù)),曲線C的參數(shù)方程為
x=4cosθ
y=4sinθ
(θ為參數(shù)).
(I)將曲線C的參數(shù)方程轉(zhuǎn)化為普通方程;
(II)若直線l與曲線C相交于A、B兩點(diǎn),試求線段AB的長.
分析:(I)利用曲線C的參數(shù)方程,利用三角函數(shù)中同角三角函數(shù)的基本關(guān)系消去參數(shù),求得x和y的關(guān)系,即圓的方程.
(II)把直線的參數(shù)方程中的x和y代入圓的方程,利用韋達(dá)定理求得t1+t2和t1t2的值,進(jìn)而利用配方法求得|t1-t2|,最后利用弦長公式求得|AB|.
解答:解:(I)由
x=4cosθ
y=4sinθ
x2=16cos2θ
y2=16sin2θ
故圓的方程為x2+y2=16.
(II)把
x=
3
+
1
2
t
y=7+
3
2
t
代入方程x2+y2=16,得t2+8
3
t+36=0

∴線段AB的長為|AB|=|t1-t2|=
(t1+t2)2-4t1t2
=4
3
點(diǎn)評:本題主要考查了直線與圓的方程的應(yīng)用,參數(shù)方程問題.考查了學(xué)生對基礎(chǔ)知識的綜合運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

C選修4-4:坐標(biāo)系與參數(shù)方程已知直線l的參數(shù)方程:
x=2t
y=1+4t
(t為參數(shù)),曲線C的極坐標(biāo)方程:ρ=2
2
sin(θ+
π
4
),求直線l被曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

極坐標(biāo)與參數(shù)方程:
已知直線l的參數(shù)方程是:
x=2t
y=1+4t
(t為參數(shù)),圓C的極坐標(biāo)方程是:ρ=2
2
sin(θ+
π
4
),試判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的參數(shù)方程為
x=
1
2
t
y=2+
3
2
t
(t為參數(shù)),曲線C的極坐標(biāo)方程是ρ=
sinθ
1-sin2θ
以極點(diǎn)為原點(diǎn),極軸為x軸正方向建立直角坐標(biāo)系,點(diǎn)M(0,2),直線l與曲線C交于A,B兩點(diǎn).
(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)線段MA,MB長度分別記|MA|,|MB|,求|MA|•|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題) 已知直線l的參數(shù)方程為
x=
2
2
t
y=1+
2
2
t
(t為參數(shù)),圓C的參數(shù)方程為
x=cosθ+2
y=sinθ
(θ為參數(shù)),則圓心C到直線l的距離為
3
2
2
3
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•香洲區(qū)模擬)已知直線L的參數(shù)方程為:
x=t
y=a+
3
t
(t為參數(shù)),圓C的參數(shù)方程為:
x=sinθ
y=cosθ+1
(θ為參數(shù)).若直線L與圓C有公共點(diǎn),則常數(shù)a的取值范圍是
[-1,3]
[-1,3]

查看答案和解析>>

同步練習(xí)冊答案