設(shè)二次函數(shù)f(x)=x2-x+a(a>0),若f(m)<0,則f(m-1)的值為


  1. A.
    正數(shù)
  2. B.
    負(fù)數(shù)
  3. C.
    非負(fù)數(shù)
  4. D.
    正數(shù)、負(fù)數(shù)和零都有可能
A
分析:先由函數(shù)f(x)=x2-x+a(a>0)的對(duì)稱軸為x=,a>0,以及f(0)=a>0得到對(duì)應(yīng)的大致圖象,再利用f(m)<0?0<m<1?m-1<0結(jié)合圖象即可求得結(jié)論.
解答:因?yàn)楹瘮?shù)f(x)=x2-x+a(a>0)的對(duì)稱軸為x=,
又因?yàn)閍>0,故f(0)=a>0對(duì)應(yīng)的大致圖象如圖:
由f(m)<0?0<m<1?m-1<0?f(m-1)>0.
故選A.
點(diǎn)評(píng):本題主要考查二次函數(shù)的性質(zhì),解決本題的關(guān)鍵在于通過已知條件畫出對(duì)應(yīng)圖象,由圖象求出m的取值范圍,進(jìn)而求的結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c滿足f(-1)=0,對(duì)于任意的實(shí)數(shù)x都有f(x)-x≥0,并且當(dāng)x∈(0,2)時(shí),f(x)≤(
x+12
)
2

(1)求f(1)的值;
(2)求證:a>0,c>0;
(3)當(dāng)x∈(-1,1)時(shí),函數(shù)g(x)=f(x)-mx,m∈R是單調(diào)的,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c(a>0),方程f(x)-x=0的兩個(gè)根x1、x2滿足0<x1<x2
1
a
,且函數(shù)f(x)的圖象關(guān)于直線x=x0對(duì)稱,則有( 。
A、x0
x1
2
B、x0
x1
2
C、x0
x1
2
D、x0
x1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+(2b+1)x-a-2(a,b∈R,a≠0)在[3,4]上至少有一個(gè)零點(diǎn),求a2+b2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足:當(dāng)x=1時(shí),f(x)取得最小值1,且f(0)=
32

(1)求a、b、c的值;
(2)是否存在實(shí)數(shù)m,n,使x∈[m,n]時(shí),函數(shù)的值域也是[m,n]?若存在,則求出這樣的實(shí)數(shù)m,n;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=x2+x+a(a>0),若f(m)<0,則有( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案