在極坐標(biāo)系內(nèi),已知曲線的方程為,以極點(diǎn)為原點(diǎn),極軸方向?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013091700050431795533/SYS201309170006191852917538_ST.files/image003.png">正半軸方向,利用相同單位長度建立平面直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)).
(1) 求曲線的直角坐標(biāo)方程以及曲線的普通方程;
(2) 設(shè)點(diǎn)為曲線上的動(dòng)點(diǎn),過點(diǎn)作曲線的兩條切線,求這兩條切線所成角余弦值的取值范圍.
(1) ,;(2)
【解析】
試題分析:本小題主要考查極坐標(biāo)與參數(shù)方程的相關(guān)知識(shí),具體涉及到極坐標(biāo)方程與平面直角坐標(biāo)方程的互化、直線與曲線的位置關(guān)系以及有關(guān)距離等知識(shí)內(nèi)容.(1)利用極坐標(biāo)轉(zhuǎn)化公式直接轉(zhuǎn)化求圓的方程,利用消掉參數(shù)的方法得到直線的普通方程;(2)首先確定兩切線成角最大的情況,借助點(diǎn)到直線的距離和二倍角公式探求余弦值最小,進(jìn)而得到取值范圍.
試題解析:(1) 對于曲線的方程為,
可化為直角坐標(biāo)方程,即;
對于曲線的參數(shù)方程為(為參數(shù)),可化為普通方程. (5分)
(2) 過圓心點(diǎn)作直線的垂線,此時(shí)兩切線成角最大,即余弦值最小. 則由點(diǎn)到直線的距離公式可知,
,則,因此,
因此兩條切線所成角的余弦值的取值范圍是. (10分)
考點(diǎn):(1)極坐標(biāo)方程與平面直角坐標(biāo)方程的互化;(2)直線與曲線的位置關(guān)系;(3)點(diǎn)到直線的距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省長春市畢業(yè)班第四次調(diào)研測試文科數(shù)學(xué)試卷(解析版) 題型:解答題
在極坐標(biāo)系內(nèi),已知曲線的方程為,以極點(diǎn)為原點(diǎn),極軸方向?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013091600591069701027/SYS201309160100095156642764_ST.files/image003.png">正半軸方向,利用相同單位長度建立平面直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)).
(1) 求曲線的直角坐標(biāo)方程以及曲線的普通方程;
(2) 設(shè)點(diǎn)為曲線上的動(dòng)點(diǎn),過點(diǎn)作曲線的兩條切線,求這兩條切線所成角余弦值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省高三第三次模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題
在極坐標(biāo)系內(nèi),已知曲線的方程為,以極點(diǎn)為原點(diǎn),極軸方向?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013071212002270216103/SYS201307121201382568911704_ST.files/image003.png">正半軸方向,利用相同單位長度建立平面直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的直角坐標(biāo)方程以及曲線的普通方程;
(2)設(shè)點(diǎn)為曲線上的動(dòng)點(diǎn),過點(diǎn)作曲線的兩條切線,求這兩條切線所成角余弦值的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com