16.(本小題滿分8分)直線l過直線x + y-2 = 0和直線x-y + 4 = 0的交點(diǎn),且與直線3x-2y + 4 = 0平行,求直線l的方程.
解法一:聯(lián)立方程:解得 ,即直線l過點(diǎn)(-1,3),
由直線l與直線3x-2y + 4 = 0平行得:直線l的斜率為,
所以直線l的方程為:y-3 = (x + 1) 即3x-2y + 9 = 0.
解法二:∵直線x + y-2 = 0不與3x-2y + 4 = 0平行
∴可設(shè)符合條件的直線l的方程為:x-y + 4 + λ(x + y-2)= 0
整理得:(1 + λ)x + (λ-1)y + 4-2λ = 0
∵直線l與直線3x-2y + 4 = 0平行
∴ 解得λ =
∴直線l的方程為:x- y + = 0 即3x-2y + 9 = 0
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011屆南京市金陵中學(xué)高三第四次模擬考試數(shù)學(xué)試題 題型:解答題
(本小題滿分14分)已知在直四棱柱ABCDA1B1C1D1中,底面ABCD為直角梯形,且滿足AD⊥AB,BC∥AD,AD=16,AB=8,BB1=8,E,F(xiàn)分別是線段A1A,BC上的點(diǎn).
(1) 若A1E=5,BF=10,求證:BE∥平面A1FD.
(2) 若BD⊥A1F,求三棱錐A1AB1F的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆新課標(biāo)高一下學(xué)期第四次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
如圖,飛機(jī)的航線和山頂在同一個(gè)鉛直平面內(nèi),已知飛機(jī)的高度為海拔25000米,速度為3000米/分鐘,飛行員先在點(diǎn)A看到山頂C的俯角為300,經(jīng)過8分鐘后到達(dá)點(diǎn)B,此時(shí)看到山頂C的俯角為600,則山頂?shù)暮0胃叨葹槎嗌倜祝▍⒖紨?shù)據(jù):=1.414,=1.732,=2.449).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆浙江省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分8分)在直三棱柱中,,,分別為棱、的中點(diǎn),為棱上的點(diǎn)。
(1)證明:;
(2) 當(dāng)時(shí),求二面角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2007年普通高等學(xué)校招生全國統(tǒng)一考試?yán)砜茢?shù)學(xué)卷(重慶) 題型:解答題
(本小題滿分13分)如圖,在直三棱柱ABC—中, AB = 1,
;點(diǎn)D、E分別在上,且,
四棱錐與直三棱柱的體積之比為3:5。
(1)求異面直線DE與的距離;(8分)
(2)若BC =,求二面角的平面角的正切值。(5分)
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分8分)如圖,正方形A1BA2C的邊長(zhǎng)為4,D是A1B的中點(diǎn),E是BA2上的點(diǎn),將△A1DC及△A2EC分別沿DC和EC折起,使A1、A2重合于A,且二面角A-DC-E為直二面角.
(1)求證:CD⊥DE; (2)求AE與面DEC所成的角.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com