11.在平面直角坐標(biāo)系xOy中,直線l經(jīng)過點(diǎn)A(-1,0),其傾斜角是α,以原點(diǎn)O為極點(diǎn),以x軸的非負(fù)半軸為極軸,與直角坐標(biāo)系xOy取相同的長度單位,建立極坐標(biāo)系.設(shè)曲線C的極坐標(biāo)方程是ρ2=6ρcosθ-5.
(Ⅰ)若直線l和曲線C有公共點(diǎn),求傾斜角α的取值范圍;
(Ⅱ)設(shè)B(x,y)為曲線C任意一點(diǎn),求$\sqrt{3}x+y$的取值范圍.

分析 (Ⅰ)由x=ρcosθ,y=ρsinθ,代入曲線C的極坐標(biāo)方程,可得曲線的直角坐標(biāo)方程,聯(lián)立直線l的方程,消去y,運(yùn)用判別式大于等于0,可得斜率的范圍,再由斜率公式,可得傾斜角的范圍;
(Ⅱ)求得曲線C的參數(shù)方程,運(yùn)用兩角和的正弦公式和正弦函數(shù)的值域,即可得到所求范圍.

解答 解:(Ⅰ)曲線C的極坐標(biāo)方程轉(zhuǎn)化成直角坐標(biāo)方程是C:x2+y2-6x+5=0,
由題意知直線l的斜率存在,設(shè)直線l:y=k(x+1),其中k=tanα.
聯(lián)立$\left\{\begin{array}{l}{x^2}+{y^2}-6x+5=0\;,\;\;\\ y=k(x+1)\;,\;\;\end{array}\right.$
消去y得(1+k2)x2+2(k2-3)x+k2+5=0.
因?yàn)橹本l和曲線C有交點(diǎn),所以△=4(k2-3)2-4(1+k2)(k2+5)≥0,
即$-\frac{{\sqrt{3}}}{3}≤k≤\frac{{\sqrt{3}}}{3}$,
即$tanα∈[-\frac{{\sqrt{3}}}{3}\;,\;\;\frac{{\sqrt{3}}}{3}]$,
所以$α∈[0\;,\;\;\frac{π}{6}]∪[\frac{5π}{6}\;,\;\;π)$.
(Ⅱ)曲線C:x2+y2-6x+5=0即(x-3)2+y2=4的參數(shù)方程是$\left\{\begin{array}{l}x=3+2cosθ\;,\;\;\\ y=2sinθ\;,\;\;\end{array}\right.$(θ為參數(shù)),
所以點(diǎn)B(x,y)的坐標(biāo)可以寫成(3+2cosθ,2sinθ),
所以$\sqrt{3}x+y=3\sqrt{3}+2sinθ+2\sqrt{3}cosθ=3\sqrt{3}+4sin(θ+\frac{π}{3})$,
因?yàn)閟in(θ+$\frac{π}{3}$)∈[-1,1],
所以$\sqrt{3}$x+y∈[3$\sqrt{3}$-4,3$\sqrt{3}$+4].

點(diǎn)評 本題考查極坐標(biāo)方程和直角坐標(biāo)方程的互化,直線和圓的位置關(guān)系的判斷和應(yīng)用,注意運(yùn)用轉(zhuǎn)化思想和判別式大于等于0,考查圓的參數(shù)方程的運(yùn)用和兩角和的正弦公式及正弦函數(shù)的值域的運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.直角坐標(biāo)系xOy中,l是過定點(diǎn)M(1,2)且傾斜角為α的直線,在以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸,取相同的單位長度的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=2sinθ.
(1)請寫出直線l的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(2)若直線l與曲線C有兩個(gè)不同交點(diǎn)A,B,Q為弦AB的中點(diǎn),求|MQ|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知四棱錐P-ABCD的底面為平行四邊形,高為h,過底面一邊BC作截面,與側(cè)面PAQ交于EF,若截面將棱錐分成體積相等的兩部分,
(I)求證:EF∥平面ABCD;
(II)求EF到底面ABCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.對任意實(shí)數(shù)x,不等式x2+x+k>0,則k的取值范圍是{k|k>1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知M為拋物線y2=4x上的一點(diǎn),點(diǎn)M到直線4x-3y+8=0的距離為d1;點(diǎn)M到y(tǒng)軸距離為d2.則d1+d2的最小值為$\frac{7}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函f(x)=x2-x+1+alnx.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求證f(x2)<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=-\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ.
(1)把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于M,N兩點(diǎn),點(diǎn)A(1,0),求$\frac{1}{|MA|}$+$\frac{1}{|NA|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在直三棱柱ABA1-DCD1中,${D_1}C=\sqrt{2}a$,DD1=DA=DC=a,點(diǎn)E、F分別是BC、DC的中點(diǎn).
(Ⅰ)證明:AF⊥ED1;
(Ⅱ)求點(diǎn)E到平面AFD1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知fn(x)=xn+xn-1+…+x-1,x∈(0,+∞).n是不小于2的固定正整數(shù).
(1)解不等式f2(x)≤2x;
(2)試分別證明:函數(shù)f3(x)在(0,1)內(nèi)有一個(gè)零點(diǎn),且在(0,1)內(nèi)僅有一個(gè)零點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案