【答案】
分析:(1)先求切線l:y-a=(2a-2)(x-1).即l:(2a-2)x-y+(2-a)=0,再根據(jù)直線l與圓(x+1)
2+y
2=1相切有
.從而可求a的值;
(2)分類討論,令導(dǎo)數(shù)小于0,得函數(shù)y=f(x)的單調(diào)減區(qū)間,令導(dǎo)數(shù)大于0,得函數(shù)y=f(x)的單調(diào)增區(qū)間.
解答:解:(1)f(x)=ax
2+2㏑(2-x).f(1)=a.故點(1,f(1))=(1,a).
求導(dǎo)得:f′(x)=2ax
,故f′(1)=2a-2.
故切線l:y-a=(2a-2)(x-1).即l:(2a-2)x-y+(2-a)=0.
又由題設(shè)知,直線l到(-1,0)的距離為1
即有
.解得:a=1或
;
(2)f′(x)=2ax
=
,
當a<0 時,由導(dǎo)數(shù)小于0得,因為分子二次項的系數(shù)為負,
所以可得函數(shù)的單調(diào)增區(qū)間為
;
由導(dǎo)數(shù)大于0得減區(qū)間
當0≤a≤1時,當x<2時,f′(x)<0恒成立,所以函數(shù)的單調(diào)減區(qū)間為 (-∞,2)
當
>a>1時,由導(dǎo)數(shù)小于0得,函數(shù)的單調(diào)減區(qū)間為
;
由導(dǎo)數(shù)大于0得增區(qū)間
當a
時,由導(dǎo)數(shù)小于0得,函數(shù)的單調(diào)減區(qū)間為
;
由導(dǎo)數(shù)大于0得增區(qū)間
點評:本題以函數(shù)為載體,考查導(dǎo)數(shù)的幾何意義,考查直線與圓相切,考查函數(shù)的單調(diào)區(qū)間.