16.已知集合P{a,b},Q={-1,0,1},則從集合P到集合Q的映射共有9種.

分析 運用分步計數(shù)原理求解.

解答 解:集合P中的元素a在集合BQ中有3種不同的對應(yīng)方式(-1,0,1三選一),
集合P中的元素b在集合Q中也有3種不同的對應(yīng)方式(-1,0,1三選一),
根據(jù)“分步計數(shù)原理(乘法原理)”,
集合P到集合Q的映射共有N=3×3=9,
故答案為9.

點評 本題主要考查了映射的概念,以及兩集合間構(gòu)成映射個數(shù)的確定,可用列舉法,也可用乘法計數(shù)原理,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,△ABC為正三角形,AB⊥AD,AC⊥CD,PA=AC,PA⊥平面ABCD.
(1)若E為棱PC的中點,求證PD⊥平面ABE;
(2)若AB=3,求點B到平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知實數(shù)x,y滿足$\left\{\begin{array}{l}y-2≤0\\ x+3≥0\\ x-y-1≤0\end{array}\right.$,則$\frac{x+2y-6}{x-4}$的取值范圍是( 。
A.$[-1,0)∪[\frac{17}{7},+∞)$B.$[-1,0)∪[0,\frac{17}{7})$C.$(-∞,-1]∪[\frac{17}{7},+∞)$D.$[-1,\frac{17}{7}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)h(x)=ax3-1(a∈R),g(x)=lnx.
(I)若f(x)=h(x)+3xg(x)圖象過點(1,-1)時,求f(x)的單調(diào)區(qū)間;
(II)函數(shù)F(x)=$({a-\frac{1}{3}}){x^3}$+$\frac{1}{2}{x^2}$g(a)-h(x)-1,當a>${e^{\frac{10}{3}}}$(e為自然對數(shù)的底數(shù))時,函數(shù)F(x)過點A(1,m)的切線F(x)切于點B(x0,F(xiàn)(x0))
①試將m表示成x0的表達式.
②若切線至少有2條,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.下列不等關(guān)系正確的是( 。
A.($\frac{1}{3}$)${\;}^{\frac{2}{3}}$<34<($\frac{1}{3}$)-2B.($\frac{1}{3}$)-2<($\frac{1}{3}$)${\;}^{\frac{2}{3}}$<34C.(2.5)0<($\frac{1}{2}$)2.5<22.5D.($\frac{1}{2}$)2.5<(2.5)0<22.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{ax+b,x<0}\\{{2}^{x},x≥0}\end{array}\right.$,且f(-2)=3,f(-1)=f(1).
( I)求f(x)的解析式;
( II)畫出f(x)的圖象(不寫過程)并求其值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.命題“若a>-3,則a>-6”以及它的逆命題、否命題、逆否命題中,假命題的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)是一次函數(shù),g(x)是反比例函數(shù),且滿足f[f(x)]=x+2,g(1)=-1
(1)求函數(shù)f(x)和g(x);
(2)設(shè)h(x)=f(x)+g(x),判斷函數(shù)h(x)在(0,+∞)上的單調(diào)性,并用定義加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖,在正方體ABCD-A1B1C1D1中,B1D與C1D1所成角的正弦值是(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步練習冊答案