【題目】2009年以來,菜鳥網(wǎng)絡(luò)物流和淘寶商城雙十一活動已經(jīng)走過十年,某數(shù)學興趣小組收集了近五年雙十一當天菜鳥網(wǎng)絡(luò)物流訂單數(shù)據(jù)如下表.并且查知這五年訂單數(shù)的平均數(shù)約為6.5億件.

年份代碼

1

2

3

4

5

年份

2014

2015

2016

2017

2018

訂單數(shù)(億件)

2.8

4.7

8.1

10.4

1)現(xiàn)發(fā)現(xiàn)表中一個數(shù)據(jù)看不清,試求出表中的值,并根據(jù)收集的這些數(shù)據(jù)和下列有關(guān)參考數(shù)據(jù)說明函數(shù),中,哪一個類型更適合關(guān)于的回歸方程;

2)依據(jù)你的判斷,求關(guān)于的回歸方程;

3)預(yù)測菜鳥網(wǎng)絡(luò)物流2019年的訂單數(shù).

參考數(shù)據(jù):

訂單數(shù)(億件)

2.8

4.7

8.1

10.4

1.03

1.55

1.87

2.09

2.34

,.

參考公式:,.

【答案】(1);用擬合更好,理由見詳解;(2(3)億件.

【解析】

1)根據(jù)平均數(shù)即可求得參數(shù),根據(jù)兩個回歸方程的相關(guān)系數(shù)判斷哪個方程更適合;

2)根據(jù)參考公式,結(jié)合圖表數(shù)據(jù),計算系數(shù)即可;

3)根據(jù)已經(jīng)求解的回歸方程,只需令自變量為2019年對應(yīng)的即可.

1)因為訂單的平均數(shù)為6.5億件,

解得.

因為由參考數(shù)據(jù)可知,當用擬合時,其相關(guān)系數(shù)為

當用擬合時,其相關(guān)系數(shù)為

因為,

更適合作回歸方程.

2)由表中數(shù)據(jù)可得

由題可知

=

故回歸方程為

(3)2019年對應(yīng)的

故令,解得

故菜鳥網(wǎng)絡(luò)物流2019年的預(yù)測的訂單數(shù)為億件.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學名著《九章算術(shù)》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬、“馬主曰:“我馬食半牛,”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟、羊主人說:“我羊所吃的禾苗只有馬的一半,”馬主人說:“我馬所吃的禾苗只有牛的一半,“打算按此比例償還,他們各應(yīng)償還多少?該問題中,1斗為10升,則馬主人應(yīng)償還( )升粟?

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的函數(shù)和數(shù)列滿足下列條件:,當時,,其中均為非零常數(shù).

1)數(shù)列是等差數(shù)列,求的值;

2)令,若,求數(shù)列的通項公式;

3)證明:數(shù)列是等比數(shù)列的充要條件是.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校有30位高級教師,其中60%人愛好體育鍛煉,經(jīng)體檢調(diào)查,得到如下列聯(lián)表.

身體好

身體一般

總計

愛好體育鍛煉

2

不愛好體育鍛煉

4

總計

20

1)根據(jù)以上信息完成列聯(lián)表,并判斷有多大把握認為“身體好與愛好體育鍛煉有關(guān)系”?

2)現(xiàn)從身體一般的教師中抽取3人,記3人中愛好體育鍛煉的人數(shù)為,求的分布列及數(shù)學期望.

參考公式:,其中.

臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為弘揚中華優(yōu)秀傳統(tǒng)文化,某中學高三年級利用課余時間組織學生開展小型知識競賽.比賽規(guī)則:每個參賽者回答A、B兩組題目,每組題目各有兩道題,每道題答對得1分,答錯得0分,兩組題目得分的和做為該選手的比賽成績.小明估計答對A組每道題的概率均為,答對B組每道題的概率均為

(Ⅰ)按此估計求小明A組題得分比B組題得分多1分的概率;

(Ⅱ)記小明在比賽中的得分為ξ,按此估計ξ的分布列和數(shù)學期望Eξ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),

(1)若曲線在點處的切線與軸平行,求;

(2)當時,函數(shù)的圖象恒在軸上方,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其導函數(shù)的最大值為.

(1)求實數(shù)的值;

(2)若,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)拋物線的準線與軸的交點為,過作直線交拋物線于兩點.

(1)求線段中點的軌跡;

(2)若線段的垂直平分線交對稱軸于),求的取值范圍;

(3)若直線的斜率依次取時,線段的垂直平分線與對稱軸的交點依次為

,當時,

求: 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,是兩個平面,mn是兩條直線,有下列四個命題;

①如果,,,那么.

②如果,,那么.

③如果,,那么.

④如果,,那么m所成的角和n所成的角相等.

其中正確的命題的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案