【題目】設(shè)函數(shù),其中為自然對數(shù)的底數(shù).

(1)若曲線軸上的截距為,且在點處的切線垂直于直線,求實數(shù)的值;

(2)記的導(dǎo)函數(shù)為, 在區(qū)間上的最小值為,求的最大值.

【答案】(1) 的值分別為1, ;(2) .

【解析】試題分析:(1)先利用曲線軸上的截距為求得,再求導(dǎo),利用導(dǎo)數(shù)的幾何意義進(jìn)行求解;(2)連續(xù)求導(dǎo),得到,再通過分類討論思想討論的取值,研究函數(shù)在區(qū)間的單調(diào)性和最小值,得到分段函數(shù),則通過求導(dǎo)確定的最小值.

試題解析:(1)曲線軸上的截距為,則過點,代入,

,則,求導(dǎo)

,即,則,

∴實數(shù)的值分別為1, ;

(2), , ,

①當(dāng)時,∵,∴恒成立,

, 上單調(diào)遞增,

.

②當(dāng)時,∵,∴恒成立,

單調(diào)遞減,

.

③當(dāng)時, ,得 上單調(diào)遞減,在上單調(diào)遞增,

所以

,

∴當(dāng)時, ,

當(dāng)時, ,求導(dǎo), ,

時, ,

單調(diào)通減, ,

當(dāng)時, ,單調(diào)遞減, ,

的最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,∠ADC=90°,CDAB,ADCDAB=2,將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體DABC.

(1)求證:AD⊥平面BCD;

(2)求三棱錐CABD的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列中, , 成等差數(shù)列;數(shù)列中的前項和為, .

(1)求數(shù)列的通項公式;

(2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在小明的婚禮上,為了活躍氣氛,主持人邀請10位客人做一個游戲.第一輪游戲中,主持人將標(biāo)有數(shù)字1,2,…,10的十張相同的卡片放入一個不透明箱子中,讓客人依次去摸,摸到數(shù)字6,7,…,10的客人留下,其余的淘汰,第二輪放入1,2,…,5五張卡片,讓留下的客人依次去摸,摸到數(shù)字3,4,5的客人留下,第三輪放入1,2,3三張卡片,讓留下的客人依次去摸,摸到數(shù)字2,3的客人留下,同樣第四輪淘汰一位,最后留下的客人獲得小明準(zhǔn)備的禮物.已知客人甲參加了該游戲.

(1)求甲拿到禮物的概率;

(2)設(shè)表示甲參加游戲的輪數(shù),求的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓的圓心為,直線過點且與軸不重合, 交圓兩點,過的平行線交于點.

(1)證明為定值,并寫出點的軌跡方程;

(2)設(shè),過點作直線,交點的軌跡于兩點 (異于),直線的斜率分別為,證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,圓的圓心坐標(biāo)為,半徑為2.以極點為原點,極軸為的正半軸,取相同的長度單位建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)).

(1)求圓的極坐標(biāo)方程;

(2)設(shè)與圓的交點為, 軸的交點為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線 ,則下列說法正確的是( )

A. 上各點橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線

B. 上各點橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線

C. 把曲線向右平移個單位長度,再把得到的曲線上各點橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到曲線

D. 把曲線向右平移個單位長度,再把得到的曲線上各點橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 是正三角形, 是等腰三角形, ,

(1)求證: ;

(2)若, ,平面平面,直線與平面所成的角為45°,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)其中.

1)設(shè),討論的單調(diào)性;

2)若函數(shù)內(nèi)存在零點,求的范圍.

查看答案和解析>>

同步練習(xí)冊答案