【題目】如圖在△ABC中,已知點D在BC邊上,滿足AD⊥AC,cos ∠BAC=-,AB=3,BD=.

(1)求AD的長;

(2)求△ABC的面積.

【答案】見解析

【解析】(1)因為AD⊥AC,cos ∠BAC=-,

所以sin ∠BAC=.

又sin ∠BAC=sin=cos ∠BAD=

在△ABD中,BD2=AB2+AD2-2AB·AD·cos ∠BAD,

即AD2-8AD+15=0,

解得AD=5或AD=3,由于AB>AD,

所以AD=3.

(2)在△ABD中,,

又由cos ∠BAD=得sin ∠BAD=,所以sin ∠ADB=,則sin ∠ADC=sin(π-∠ADB)=sin ∠ADB=.

因為∠ADB=∠DAC+∠C=+∠C,所以cos ∠C=.

在Rt△ADC中,cos ∠C=,則tan ∠C=

所以AC=3,

則△ABC的面積S=AB·AC·sin ∠BAC=×3×3×=6.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】學校藝術節(jié)對同一類的,,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“,兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sinωx·cosωx-cos2ωx(ω>0)的最小正周期為.

(1)求ω的值;

(2)在△ABC中,sinB,sinA,sinC成等比數(shù)列,求此時f(A)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為常數(shù). 

(1)判斷函數(shù)的單調(diào)性并證明;

(2)當時,對于任意,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設等差數(shù)列的公差,且,記

(1)用分別表示,并猜想;

(2)用數(shù)學歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2016高考山東理數(shù)】已知.

I)討論的單調(diào)性;

II)當時,證明對于任意的成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2016年高考四川理數(shù)】設函數(shù)f(x)=ax2-a-lnx,其中a R.

)討論f(x)的單調(diào)性;

)確定a的所有可能取值,使得在區(qū)間(1+)內(nèi)恒成立(e=2.718為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x-1x2-2,試利用基本初等函數(shù)的圖象,判斷f(x)有幾個零點,并利用零點存在性定理確定各零點所在的區(qū)間(各區(qū)間長度不超過1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖(1),在等腰梯形中, 是梯形的高, ,現(xiàn)將梯形沿, 折起,使,得一簡單組合體如 圖(2)示,已知 分別為, 的中點.

(1)求證: 平面;

(2)若直線與平面所成角的正切值為,求平面與平面所成的銳二面角大小.

查看答案和解析>>

同步練習冊答案