【題目】已知命題P:R上定義運算x y=(1-x)y.不等式x1-a)x<1對任意實數(shù)x恒成立;命題Q:若不等式≥2對任意的x∈ N*恒成立.P∧ Q為假命題,P∨ Q為真命題,求實數(shù)a的取值范圍.

【答案】

【解析】

分別求出p、q為真時,實數(shù)a的取值范圍,通過p∧q為假命題,p∨q為真命題,可知p、q有且只有一個是真命題,分類討論,求出求實數(shù)a的取值范圍.

由題意知,x (1-a)x=(1-x)(1-a)x,

若命題P為真,(1-a)x2-(1-a)x+1>0對任意實數(shù)x恒成立,

∴①當1-a=0即a=1時,1>0恒成立,∴a=1.

當1-a≠0時,

∴-3<a<1.

綜合①②得,-3<a≤1.

若命題Q為真,∵x>0,∴x+1>0,

則(x2+ax+6)≥2(x+1)對任意的x∈N*恒成立,

即a≥-+2對任意的x∈N*恒成立,

令f(x)=-+2,只需a≥f(x)max,

∵f(x)≤-2+2=-4+2=-2,

當且僅當x=(x∈N*),即x=2時取等號.

∴a≥-2.

∵P∧Q為假命題,PQ為真命題,

P,Q中必有一個真命題,一個假命題.

若P為真Q為假,則解得- 3<a<-2,

若P為假Q(mào)為真,則

∴a>1.

綜上可得a取值范圍為(-3,-2)∪(1,+∞).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中:

①線性回歸方程 至少經(jīng)過點(x1,y1),(x2,y2),…,(xn ,yn)中的一個點;

②若變量之間的相關系數(shù)為 ,則變量之間的負相關很強;

③在回歸分析中,相關指數(shù) 為0.80的模型比相關指數(shù)為0.98的模型擬合的效果要好;

④在回歸直線中,變量時,變量的值一定是-7。

其中假命題的個數(shù)是 ( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設每天從甲地去乙地的旅客人數(shù)X是服從正態(tài)分布N(800,502)的隨機變量,若一天中從甲地去乙地的旅客人數(shù)不超過900的概率為p0,p0的值為 ( )

A. 0.954 4 B. 0.682 6 C. 0.997 4 D. 0.977 2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.

(1)若f(x)在x=3處取得極值,求常數(shù)a的值;

(2)若f(x)在(-∞,0)上為增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=lnx﹣ ax2﹣2x,其中a≤0.
(1)若曲線y=f(x)在點(1,f(1))處的切線方程為y=2x+b,求a﹣2b的值;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)設函數(shù)g(x)=x2﹣3x+3,如果對于任意的x,t∈(0,1],都有f(x)≤g(t)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的前n項和為Sn,且Sn=4an﹣p,其中p是不為零的常數(shù).

(1)證明:數(shù)列{an}是等比數(shù)列;

(2)當p=3時,若數(shù)列{bn}滿足bn+1=bn+an(nN*),b1=2,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C所對邊的邊長,且C=,a+b=λc(其中λ>1).

(1)若λ=時,證明:△ABC為直角三角形;

(2)若·λ2,且c=3,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.向量 =(a, b)與 =(cosA,sinB)平行.
(1)求A;
(2)若a= ,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐P﹣ABCD中,側面PAD⊥底面ABCD,底面ABCD是邊長為2的正方形,又PA=PD,∠APD=60°,E,G分別是BC,PE的中點

(1)求證:AD⊥PE
(2)求二面角E﹣AD﹣G的余弦值.

查看答案和解析>>

同步練習冊答案