【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸)、一位居民的月用水量不超過的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(1)設(shè)該市有30萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(2)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計(jì)的值,并說明理由.
(3)利用分層抽樣的方法在[0,0.5) [3.5,4) [4,4.5)三組中選取5位居民,再?gòu)倪@5位居民中任意取三人,求這三人恰有兩人來自同一組的概率。
【答案】(1)3.6(萬);(2)2.9;(3)
【解析】試題分析:本題主要考查頻率分布直方圖、頻率、頻數(shù)的計(jì)算公式等基礎(chǔ)知識(shí),考查學(xué)生的分析問題解決問題的能力. 第一問,由高×組距=頻率,計(jì)算每組中的頻率,因?yàn)樗蓄l率之和為1,計(jì)算出a的值;第二問,利用高×組距=頻率,先計(jì)算出每人月均用水量不低于3噸的頻率,再利用頻率×樣本總數(shù)=頻數(shù),計(jì)算所求人數(shù);第三問,將前6組的頻率之和與前5組的頻率之和進(jìn)行比較,得出2.5≤x<3,再進(jìn)行計(jì)算.
試題解析:(Ⅰ)由頻率分布直方圖知,月均用水量在[0,0.5)中的頻率為0.08×0.5=0.04,
同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)中的頻率分別為0.08,0.20,0.26,0.06,0.04,0.02.
由0.04+0.08+0.5×a+0.20+0.26+0.5×a+0.06+0.04+0.02=1,
解得a=0.30.
(Ⅱ)由(Ⅰ),100位居民每人月均用水量不低于3噸的頻率為0.06+0.04+0.02=0.12.
由以上樣本的頻率分布,可以估計(jì)全市30萬居民中月均用水量不低于3噸的人數(shù)為
300 000×0.12="36" 000.
(Ⅲ)因?yàn)榍?/span>6組的頻率之和為0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85,
而前5組的頻率之和為0.04+0.08+0.15+0.20+0.26=0.73<0.85,
所以2.5≤x<3.
由0.3×(x–2.5)=0.85–0.73,
解得x=2.9.
所以,估計(jì)月用水量標(biāo)準(zhǔn)為2.9噸時(shí),85%的居民每月的用水量不超過標(biāo)準(zhǔn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測(cè)標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量 與尺寸 之間滿足關(guān)系式 為大于 的常數(shù)),現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測(cè)得數(shù)據(jù)如下:
對(duì)數(shù)據(jù)作了處理,相關(guān)統(tǒng)計(jì)量的值如下表:
(1)根據(jù)所給數(shù)據(jù),求 關(guān)于 的回歸方程(提示:由已知, 是 的線性關(guān)系);
(2)按照某項(xiàng)指標(biāo)測(cè)定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間 內(nèi)時(shí)為優(yōu)等品,現(xiàn)從抽取的6件合格產(chǎn)品再任選3件,求恰好取得兩件優(yōu)等品的概率;
(附:對(duì)于一組數(shù)據(jù) ,其回歸直線 的斜率和截距的最小二乘法估計(jì)值分別為 )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,江的兩岸可近似地看出兩條平行的直線,江岸的一側(cè)有, 兩個(gè)蔬菜基地,江岸的另一側(cè)點(diǎn)處有一個(gè)超市.已知、、中任意兩點(diǎn)間的距離為千米,超市欲在之間建一個(gè)運(yùn)輸中轉(zhuǎn)站, , 兩處的蔬菜運(yùn)抵處后,再統(tǒng)一經(jīng)過貨輪運(yùn)抵處,由于, 兩處蔬菜的差異,這兩處的運(yùn)輸費(fèi)用也不同.如果從處出發(fā)的運(yùn)輸費(fèi)為每千米元.從處出發(fā)的運(yùn)輸費(fèi)為每千米元,貨輪的運(yùn)輸費(fèi)為每千米元.
(1)設(shè),試將運(yùn)輸總費(fèi)用(單位:元)表示為的函數(shù),并寫出自變量的取值范圍;
(2)問中轉(zhuǎn)站建在何處時(shí),運(yùn)輸總費(fèi)用最。坎⑶蟪鲎钚≈.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題:
①樣本方差反映的是所有樣本數(shù)據(jù)與樣本平均值的偏離程度;
②基本事件空間是Ω={1,2,3,4,5,6},若事件A={1,3},B={3,5,6},A,B為互斥事件,但不是對(duì)立事件;
③某校高三(1)班和高三(2)班的人數(shù)分別是m,n,若一?荚嚁(shù)學(xué)平均分分別是a,b,則這兩個(gè)班的數(shù)學(xué)平均分為;
④如果平面外的一條直線上有兩個(gè)點(diǎn)到這個(gè)平面的距離相等,那么這條直線與這個(gè)平面的位置關(guān)系為平行或相交。
其中真命題的序號(hào)是__________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利用隨機(jī)模擬的方法可以估計(jì)圖中由曲線與兩直線x=2及y=0所圍成的陰影部分的面積S:①先產(chǎn)生兩組0~1的均勻隨機(jī)數(shù),a=RAND(。b=RAND(。② 做變換,令x=2a,y=2b;③產(chǎn)生N個(gè)點(diǎn)(x,y),并統(tǒng)計(jì)落在陰影內(nèi)的點(diǎn)(x,y)的個(gè)數(shù),已知某同學(xué)用計(jì)算機(jī)做模擬試驗(yàn)結(jié)果,選取了以下20組數(shù)據(jù)(如圖所示),則據(jù)此可估計(jì)S的值為____.
x | y | y-0.5*x*x |
0.441414481 | 1.849136261 | 1.751712889 |
1.836710045 | 0.508951247 | -1.177800647 |
1.389538592 | 0.999398689 | 0.033989941 |
0.745446842 | 1.542498362 | 1.264652865 |
0.981548556 | 1.928476536 | 1.446757752 |
1.87036015 | 1.287100762 | -0.462022784 |
1.20252176 | 1.271691664 | 0.548662372 |
1.931929493 | 0.920911487 | -0.945264297 |
0.450507939 | 1.561663263 | 1.460184562 |
1.356178263 | 1.856227093 | 0.936617353 |
0.408489063 | 1.564834147 | 1.481402489 |
0.163980707 | 0.135034106 | 0.121589269 |
1.868152447 | 0.350326824 | -1.394669959 |
0.252753469 | 1.287326597 | 1.255384439 |
1.253648606 | 1.872701968 | 1.086884555 |
0.679831952 | 0.140283887 | -0.090801854 |
1.544339084 | 0.804655288 | -0.387836316 |
1.563089931 | 0.872844524 | -0.348780542 |
1.17458008 | 0.867440167 | 0.177620985 |
1.057219794 | 1.791271879 | 1.232415032 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列{an}前n項(xiàng)和為Sn,已知,且S1,S2,S4成等比數(shù)列,求{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中,和是邊長(zhǎng)為的等邊三角形,,分別是的中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面⊥平面;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠在政府的幫扶下,準(zhǔn)備轉(zhuǎn)型生產(chǎn)一種特殊機(jī)器,生產(chǎn)需要投入固定成本萬元,生產(chǎn)與銷售均已百臺(tái)計(jì)數(shù),且每生產(chǎn)臺(tái),還需增加可變成本萬元,若市場(chǎng)對(duì)該產(chǎn)品的年需求量為臺(tái),每生產(chǎn)百臺(tái)的實(shí)際銷售收入近似滿足函數(shù).
()試寫出第一年的銷售利潤(rùn)(萬元)關(guān)于年產(chǎn)量(單位:百臺(tái),,)的函數(shù)關(guān)系式:(說明:銷售利潤(rùn)=實(shí)際銷售收入-成本)
()因技術(shù)等原因,第一年的年生產(chǎn)量不能超過臺(tái),若第一年的年支出費(fèi)用(萬元)與年產(chǎn)量(百臺(tái))的關(guān)系滿足,問年產(chǎn)量為多少百臺(tái)時(shí),工廠所得純利潤(rùn)最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com