精英家教網 > 高中數學 > 題目詳情

O為坐標原點,F1,F2是雙曲線=1(a>0,b>0)的焦點,若在雙曲線上存在點P,滿足∠F1PF2=60°,|OP|=a,則該雙曲線的漸近線方程為

[  ]
A.

x±y=0

B.

x±y=0

C.

x±y=0

D.

x±y=0

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設O為坐標原點,F1,F2是雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的焦點,若在雙曲線上存在點P,滿足F1PF2=60°,|OP|=
10
a
,則該雙曲線的漸近線方程為( 。
A、
3
y=0
B、
3
x±y=0
C、
2
y=0
D、
2
x±y=0

查看答案和解析>>

科目:高中數學 來源: 題型:

設O為坐標原點,F1,F2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,若在橢圓上存在點P滿足F1PF2=
π
3
,且|OP|=
3
2
a
,則該橢圓的離心率為
1
2
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

設O為坐標原點,F1,F2是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的焦點,若在橢圓上存在點P,滿足∠F1PF2=60°,|OP|=
3
2
a
,則該橢圓的離心率為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設O為坐標原點,F1,F2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的焦點,若在雙曲線上存在點P,滿足∠F1PF2=60°,|OP|=
7
2
a,則該雙曲線的離心率為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設O為坐標原點,F1,F2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的焦點,若在雙曲線上存在點P,滿足∠F1PF2=30°,|OP|=
7
a,則該雙曲線的漸近線方程為?

查看答案和解析>>

同步練習冊答案