20.已知函數(shù)f(x)=$\sqrt{3}$sin?x+cosωx(ω>0)的圖象與x軸交點(diǎn)的橫坐標(biāo)依次構(gòu)成一個(gè)公差為$\frac{π}{2}$的等差數(shù)列,把函數(shù)f(x)的圖象沿x軸向左平移$\frac{π}{6}$個(gè)單位,得到函數(shù)g(x)的圖象,則(  )
A.g(x)是奇函數(shù)B.g(x)關(guān)于直線x=-$\frac{π}{4}$對(duì)稱
C.g(x)在[$\frac{π}{4}$,$\frac{π}{2}$]上是增函數(shù)D.當(dāng)x∈[$\frac{π}{6}$,$\frac{2π}{3}$]時(shí),g(x)的值域是[2,1]

分析 將函數(shù)化簡(jiǎn),圖象與x軸交點(diǎn)的橫坐標(biāo)依次構(gòu)成一個(gè)公差為$\frac{π}{2}$的等差數(shù)列,可知周期為π,由周期求出ω,向左平移$\frac{π}{6}$個(gè)單位可得g(x)的解析式,再利用三角函數(shù)圖象及性質(zhì),可得結(jié)論.

解答 解:f(x)=$\sqrt{3}$sin?x+cosωx(ω>0),
化簡(jiǎn)得:f(x)=2sin(?x+$\frac{π}{6}$),
∵圖象與x軸交點(diǎn)的橫坐標(biāo)依次構(gòu)成一個(gè)公差為$\frac{π}{2}$的等差數(shù)列,可知周期為π
∴T=π=$\frac{2π}{ω}$,解得ω=2.
那么:f(x)=2sin(2x+$\frac{π}{6}$),圖象沿x軸向左平移$\frac{π}{6}$個(gè)單位,得:2sin[2(x+$\frac{π}{6}$)+$\frac{π}{6}$]=2cos2x.
∴g(x)=2cos2x,故g(x)是偶函數(shù),在區(qū)間[0,$\frac{π}{2}$]單調(diào)減函數(shù).所以A,C不對(duì).
對(duì)稱軸方程為x=$\frac{1}{2}kπ$(k=Z),檢驗(yàn)B不對(duì).
當(dāng)x∈[$\frac{π}{6}$,$\frac{2π}{3}$]時(shí),那么2x∈[$\frac{π}{3}$,$\frac{4π}{3}$],g(x)的最大值為1,最小值為-2,故值域?yàn)閇-2,1].D正確.
故選:D.

點(diǎn)評(píng) 本題考查了三角函數(shù)的輔助角公式的化簡(jiǎn)和圖象的平移,三角函數(shù)的性質(zhì)的運(yùn)用能力.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列命題正確的是(  )
A.若$\overrightarrow a•\overrightarrow b=\overrightarrow a•\overrightarrow c$,則$\overrightarrow b=\overrightarrow c$B.若$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a-\overrightarrow b}|$,則$\overrightarrow a•\overrightarrow b=0$
C.若$\overrightarrow a∥\overrightarrow b,\overrightarrow b∥\overrightarrow c$,則$\overrightarrow a∥\overrightarrow c$D.若$\overrightarrow a$與$\overrightarrow b$是單位向量,則$\overrightarrow a•\overrightarrow b=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,M,N分別是棱AA1,CC1的中點(diǎn),
(Ⅰ)求正方體ABCD-A1B1C1D1的內(nèi)切球的半徑與外接球的半徑之比;
(Ⅱ)求四棱錐A-MB1ND的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)y=sinωx(ω>0)在區(qū)間[0,$\left.{\frac{π}{3}}$]上為增函數(shù),且圖象關(guān)于點(diǎn)(3π,0)對(duì)稱,則ω的最大值為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.定義函數(shù)y=f(x),x∈I,若存在常數(shù)M,對(duì)于任意x1∈I,存在唯一的x2∈I,使得$\frac{f({x}_{1})+f({x}_{2})}{2}$=M,則稱函數(shù)f(x)在I上的“均值”為M,已知f(x)=log2x,x∈[1,22017],則函數(shù)f(x)=log2x在∈[1,22017]上的“均值”為$\frac{2017}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=x+blnx在區(qū)間(0,2)上不是單調(diào)函數(shù),則b的取值范圍是( 。
A.(-∞,0)B.(-∞,-2)C.(-2,0)D.(-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在等差數(shù)列{an}中,a2=4,a1+a5=14,
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)求數(shù)列{an}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.利用函數(shù)的性質(zhì)(如單調(diào)性與奇偶性)來(lái)解不等式是我們常用方法,通過(guò)下列題組體會(huì)此方法的適用范圍及應(yīng)注意什么問(wèn)題?
(1)已知函數(shù)f(x)=x|x-2|,則不等式f($\sqrt{2}$-x)≤f(1)的解集為[-1,+∞).
(2)已知定義在R上的奇函數(shù)f(x)在x>0時(shí)滿足f(x)=x4,且f(x+t)≤4f(x)在x∈[1,16]恒成立,則實(shí)數(shù)t的最大值是$\sqrt{2}$-1.
(3)已知函數(shù)f(x)=$\left\{\begin{array}{l}{2,x>1}\\{(x-1)^{2}+2,x≤1}\end{array}$,則不等式f(1-x2)>f(2x)的解集是{x|x<-1-$\sqrt{2}$ 或 x>-1+$\sqrt{2}$ }.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.定義A?B={y|y=ax,a∈A,x∈B},其中$A=\{\frac{1}{2},2\}$,B={0,1},則A?B中所有元素的積等于1.

查看答案和解析>>

同步練習(xí)冊(cè)答案