已知拋物線、橢圓和雙曲線都經(jīng)過點(diǎn)M(1,2),它們在x軸上有共同焦點(diǎn),橢圓和雙曲線的對稱軸是坐標(biāo)軸,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn).
(1)求這三條曲線的方程;
(2)已知動直線l過點(diǎn)P(3,0),交拋物線于A,B兩點(diǎn),是否存在垂直于x軸的直線l′被以AP為直徑的圓截得的弦長為定值?若存在,求出L′的方程;若不存在,說明理由.
【答案】分析:(1)由題意,把點(diǎn)M(1,2)代入拋物線的方程,求得拋物線的方程和焦點(diǎn)坐標(biāo),再把點(diǎn)M(1,2),代入橢圓和雙曲線的標(biāo)準(zhǔn)方程,即可求得結(jié)果;
(2)設(shè)AP的中點(diǎn)為C,l'的方程為:x=a,以AP為直徑的圓交l'于D,E兩點(diǎn),DE中點(diǎn)為H,根據(jù)垂徑定理即可得到方程=(a-2)x1-a2+3a,探討該式何時是定值.
解答:解:(1)設(shè)拋物線方程為y2=2px(p>0),將M(1,2)代入方程得p=2,
∴拋物線方程為:y2=4x;由題意知橢圓、雙曲線的焦點(diǎn)為F(-1,0)1,F(xiàn)2(1,0),∴c=1;
對于橢圓,2a=|MF1|+|MF2|=;∴a=1+

∴b2=a2-c2=2+2
∴橢圓方程為:=1
對于雙曲線,2a'=||MF1|-|MF2||=2-2
∴a'=-1
∴a'2=3-2
∴b'2=c'2-a'2=2-2
∴雙曲線方程為:=1

(2)設(shè)AP的中點(diǎn)為C,l'的方程為:x=a,以AP為直徑的圓交l'于D,E兩點(diǎn),DE中點(diǎn)為H.

∴|DC|=
|
∴|DH|2=|DC|2-|CH|2=
=(a-2)x1-a2+3a
當(dāng)a=2時,|DH|2=-4+6=2為定值;
∴|DE|=2|DH|=2為定值
此時l'的方程為:x=2
點(diǎn)評:此題是個難題.本題考查了橢圓與雙曲線拋物線的標(biāo)準(zhǔn)方程即簡單的幾何性質(zhì)、直線與圓錐曲線的位置關(guān)系,是一道綜合性的試題,考查了學(xué)生綜合運(yùn)用知識解決問題的能力.其中問題(2)是一個開放性問題,考查了同學(xué)們觀察、推理以及創(chuàng)造性地分析問題、解決問題的能力,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線、橢圓和雙曲線都經(jīng)過點(diǎn)M(1,2),它們在x軸上有共同焦點(diǎn),橢圓和雙曲線的對稱軸是坐標(biāo)軸,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn).
(1)求這三條曲線的方程;
(2)已知動直線l過點(diǎn)P(3,0),交拋物線于A,B兩點(diǎn),是否存在垂直于x軸的直線l′被以AP為直徑的圓截得的弦長為定值?若存在,求出L′的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線、橢圓和雙曲線都經(jīng)過點(diǎn)M(2,1),它們在y軸上有一個公共焦點(diǎn),橢圓和雙曲線的對稱軸是坐標(biāo)軸,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn).
(1)求這三條曲線的方程;
(2)已知動直線l過點(diǎn)P(0,3),交拋物線于A、B兩點(diǎn),是否存在垂直于y軸的直線m被以AP為直徑的圓截得的弦長為定值?若存在,求出m的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線、橢圓和雙曲線都經(jīng)過點(diǎn)M(1,2),它們在x軸上有共同焦點(diǎn),橢圓和雙曲線的對稱軸是坐標(biāo)軸,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn).
(1)求這三條曲線的方程;
(2)對于拋物線上任意一點(diǎn)Q,點(diǎn)P(a,0)都滿足|PQ|≥|a|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

.(12分)已知拋物線、橢圓和雙曲線都經(jīng)過點(diǎn),它們在軸上有共同焦點(diǎn),橢圓和雙曲線的對稱軸是坐標(biāo)軸,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn).(Ⅰ)求這三條曲線的方程;(Ⅱ)已知動直線過點(diǎn),交拋物線于兩點(diǎn),是否存在垂直于軸的直線被以為直徑的圓截得的弦長為定值?若存在,求出的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年人教A版選修2-1 2.1曲線與方程練習(xí)卷(解析版) 題型:解答題

(12分)已知拋物線、橢圓和雙曲線都經(jīng)過點(diǎn),它們在軸上有共同焦點(diǎn),橢圓和雙曲線的對稱軸是坐標(biāo)軸,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn).

(1)求這三條曲線的方程;

(2)已知動直線過點(diǎn),交拋物線于兩點(diǎn),是否存在垂直于軸的直線被以為直徑的圓截得的弦長為定值?若存在,求出的方程;若不存在,說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案