15.將正方形ABCD沿對(duì)角線BD折成直二面角A-BD-C,有如下三個(gè)結(jié)論:
①AC⊥BD;
②△ACD上等邊三角形;
③AB與平面BCD成60°的角;
其中正確結(jié)論的序號(hào)是①②.

分析 作出此直二面角的圖象,由圖形中所給的位置關(guān)系對(duì)命題逐一判斷,即可得出正確結(jié)論.

解答 解:作出如圖的圖象,其中A-BD-C=90°,E是BD的中點(diǎn),可以證明出∠AED=90°即為此直二面角的平面角
對(duì)于命題①,由于BD⊥面AEC,故AC⊥BD,此命題正確;
對(duì)于命題②,在等腰直角三角形AEC中可以解出AC等于正方形的邊長(zhǎng),故△ACD是等邊三角形,此命題正確;
對(duì)于命題③AB與平面BCD所成的線面角的平面角是∠ABE=45°,故AB與平面BCD成60°的角不正確;
綜上知①②是正確的.
故答案為:①②.

點(diǎn)評(píng) 本題考查與二面角有關(guān)立體幾何中線線之間的角的求法,線面之間的角的求法,以及線線之間位置關(guān)系的證明方法.綜合性較強(qiáng),對(duì)空間立體感要求較高.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某網(wǎng)絡(luò)營(yíng)銷部門為了統(tǒng)計(jì)某市網(wǎng)友2016年12月12日的網(wǎng)購(gòu)情況,從該市當(dāng)天參與網(wǎng)購(gòu)的顧客中隨機(jī)抽查了男女各30人,統(tǒng)計(jì)其網(wǎng)購(gòu)金額,得到如下頻率分布直方圖:
網(wǎng)購(gòu)達(dá)人非網(wǎng)購(gòu)達(dá)人合計(jì)
男性30
女性1230
合計(jì)60
若網(wǎng)購(gòu)金額超過(guò)2千元的顧客稱為“網(wǎng)購(gòu)達(dá)人”,網(wǎng)購(gòu)金額不超過(guò)2千元的顧客稱為“非網(wǎng)購(gòu)達(dá)人”.
(Ⅰ)若抽取的“網(wǎng)購(gòu)達(dá)人”中女性占12人,請(qǐng)根據(jù)條件完成上面的2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為“網(wǎng)購(gòu)達(dá)人”與性別有關(guān)?
(Ⅱ)該營(yíng)銷部門為了進(jìn)一步了解這60名網(wǎng)友的購(gòu)物體驗(yàn),從“非網(wǎng)購(gòu)達(dá)人”、“網(wǎng)購(gòu)達(dá)人”中用分層抽樣的方法確定12人,若需從這12人中隨機(jī)選取3人進(jìn)行問(wèn)卷調(diào)查.設(shè)ξ為選取的3人中“網(wǎng)購(gòu)達(dá)人”的人數(shù),求ξ的分布列和數(shù)學(xué)期望.
(參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若函數(shù)f(x)=x3-3x+5-a(a∈R)在$({-3,\frac{3}{2}})$上有2個(gè)零點(diǎn),則a的取值范圍是$[{\frac{31}{8},7})∪\left\{3\right\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.△ABC的內(nèi)角A、B、C的對(duì)邊分別是a、b、c,已知(a+b+c)(b+c-a)=bc,則角A的度數(shù)等于( 。
A.120°B.60°C.150°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若動(dòng)點(diǎn)(x,y)在曲線$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{^{2}}$=1,(0<b<4)上變化,則x2+2y的最大值為$\frac{^{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)銳角三角形ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a=2bsin A.
(Ⅰ)求角B的大小;
(Ⅱ)若a=$3\sqrt{3}$,c=5,求△ABC的面積及b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在極坐標(biāo)系中,點(diǎn) P的極坐標(biāo)是$({\sqrt{3},\frac{π}{2}})$,曲線 C的極坐標(biāo)方程為$ρ=4cos({θ-\frac{π}{3}})$.以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為 x軸的正半軸建立平面直角坐標(biāo)系,斜率為-1的直線 l經(jīng)過(guò)點(diǎn)P.
(1)寫出直線 l的參數(shù)方程和曲線 C的直角坐標(biāo)方程;
(2)若直線 l和曲線C相交于兩點(diǎn)A,B,求$\frac{{|{PA}|}}{{|{PB}|}}+\frac{{|{PB}|}}{{|{PA}|}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.定義運(yùn)算$|{\begin{array}{l}a&b\\ c&d\end{array}}$|=ad-bc,則符合條件$|{\begin{array}{l}z&{1+2i}\\{1-2i}&{1-i}\end{array}}$|=0的復(fù)數(shù)$\overline z$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知定圓C1:(x+1)2+y2=36及定圓C2:(x-1)2+y2=4,動(dòng)圓P與C1內(nèi)切,與C2外切,求動(dòng)圓圓心P的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案