(本小題滿分15分)已知橢圓經(jīng)過點,其離心率為.
(1) 求橢圓的方程;
(2)設直線與橢圓相交于兩點,以線段為鄰邊作平行四邊形,其中頂點在橢圓上,為坐標原點.求到直線的距離的最小值.
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分) 求滿足下列條件的橢圓的標準方程.
(1)焦點在坐標軸上,且經(jīng)過兩點;
(2)經(jīng)過點(2,-3)且與橢圓具有共同的焦點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知橢圓的離心率為,其中左焦點F(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x2+y2=1上,
求m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(13分)已知拋物線D的頂點是橢圓的中心,焦點與該橢圓的右焦點重合。
(1)求拋物線D的方程;
(2)已知動直線l過點P(4,0),交拋物線D于A,B兩點
(i)若直線l的斜率為1,求AB的長;
(ii)是否存在垂直于x軸的直線m被以AP為直徑的圓M所截得的弦長恒為定值?如果存在,求出m的方程,如果不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設橢圓的左、右焦點分別為,上頂點為,離心率為,在軸負半軸上有一點,且
(Ⅰ)若過三點的圓恰好與直線相切,求橢圓C的方程;
(Ⅱ)在(Ⅰ)的條件下,過右焦點作斜率為的直線與橢圓C交于兩點,在軸上是否存在點,使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
P為橢圓+=1上任意一點,F1、F2為左、右焦點,如圖所示.
(1)若PF1的中點為M,求證:|MO|=5-|PF1|;
(2)若∠F1PF2=60°,求|PF1|·|PF2|之值;
(3)橢圓上是否存在點P,使·=0,若存在,求出P點的坐標, 若不存在,試說明理由
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:.
(1)若橢圓的長軸長為4,離心率為,求橢圓的標準方程;
(2)在(1)的條件下,設過定點M(0,2)的直線l與橢圓C交于不同的兩點A、B,
且∠AOB為銳角(其中O為坐標原點),求直線l的斜率k的取值范圍;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com