已知函數(shù)表示過原點(diǎn)的曲線,且在處的切線的傾斜角均為,有以下命題:

的解析式為;

的極值點(diǎn)有且只有一個(gè);

的最大值與最小值之和等于零;

其中正確命題的序號(hào)為_                

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c,在定義域x∈[-2,2]上表示的曲線過原點(diǎn),且在x=±1處的切線斜率均為-1.有以下命題:①f(x)是奇函數(shù);②若f(x)在[s,t]內(nèi)遞減,則|t-s|的最大值為4;③f(x)的最大值為M,最小值為m,則M+m=0.④若對(duì)?x∈[-2,2],k≤f'(x)恒成立,則k的最大值為2.其中正確命題的個(gè)數(shù)有(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c,x∈[-2,2]表示的曲線過原點(diǎn),且在x=±1處的切線斜率均為-1,有以下命題:
①f(x)的解析式為:f(x)=x3-4x,x∈[-2,2];、趂(x)的極值點(diǎn)有且僅有一個(gè);  ③f(x)的最大值與最小值之和等于零,則下列選項(xiàng)正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c,在定義域x∈[-2,2]上表示的曲線過原點(diǎn),且在x=±1處的切線斜率均為-1.有以下命題:
①f(x)是奇函數(shù);②若f(x)在[s,t]內(nèi)遞減,則|t-s|的最大值為4;③f(x)的最大值為M,最小值為m,則M+m=0; ④若對(duì)?x∈[-2,2],k≤f′(x)恒成立,則k的最大值為2.其中正確命題的序號(hào)為
①③
①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c,x∈[-2,2]表示的曲線過原點(diǎn),且在x=±1處的切線斜率均為-1,給出以下結(jié)論:
①f(x)的解析式為f(x)=x3-4x,x∈[-2,2];
②f(x)的極值點(diǎn)有且僅有一個(gè);
③f(x)的最大值與最小值之和等于0.
其中正確的結(jié)論有(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案