【題目】已知橢圓的離心率,該橢圓中心到直線的距離為.

(1)求橢圓的方程;

(2)是否存在過點的直線,使直線與橢圓交于,兩點,且以為直徑的圓過定點?若存在,求出所有符合條件的直線方程;若不存在,請說明理由.

【答案】(1) .

(2) 存在直線,使得以為直徑的圓經(jīng)過點.

【解析】分析:由,該橢圓中心到直線的距離為求出橢圓方程;

(2)先假設(shè)存在這樣的直線,設(shè)出直線方程(注意考慮斜率),與橢圓聯(lián)立,考慮然后設(shè),,利用韋達定理,利用為直徑的圓過定點,轉(zhuǎn)化,轉(zhuǎn)化坐標構(gòu)造方程進行求解。

詳解:(1)直線的一般方程為,

依題意得,解得,

所以橢圓的方程為.

(2)當直線的斜率不存在時,直線即為軸,此時,為橢圓的短軸端點,以為直徑的圓經(jīng)過點.

當直線的斜率存在時,設(shè)其斜率為,由,

.

所以,得.

設(shè),,則,①

.

因為以為直徑的圓過定點,所以,則,即.

所以.②

將①式代入②式整理解得.

綜上可知,存在直線,使得以為直徑的圓經(jīng)過點.

點晴:本題考查直線與橢圓的位置關(guān)系,這類題目一般涉及設(shè)直線方程,然后和橢圓聯(lián)立,設(shè)點,考慮,然后利用韋達定理,接下來就是對題干的轉(zhuǎn)化啦,本題中典型的垂直問題,主要轉(zhuǎn)化方向就是向量點乘,因為斜率的話還需要考慮斜率是否存在。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ (m∈R)在區(qū)間[1,e]取得最小值4,則m=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某教育主管部門到一所中學(xué)檢查學(xué)生的體質(zhì)健康情況.從全體學(xué)生中,隨機抽取12名進行體質(zhì)健康測試,測試成績(百分制)以莖葉圖形式表示如圖所示.根據(jù)學(xué)生體質(zhì)健康標準,成績不低于76的為優(yōu)良.

(1)寫出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)將頻率視為概率.根據(jù)樣本估計總體的思想,在該校學(xué)生中任選3人進行體質(zhì)健康測試,求至少有1人成績是“優(yōu)良”的概率;
(3)從抽取的12人中隨機選取3人,記ξ表示成績“優(yōu)良”的學(xué)生人數(shù),求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)的焦距為4,其短軸的兩個端點與長軸的一個端點構(gòu)成正三角形.
(1)求橢圓C的標準方程;
(2)設(shè)F為橢圓C的左焦點,M為直線x=﹣3上任意一點,過F作MF的垂線交橢圓C于點P,Q.證明:OM經(jīng)過線段PQ的中點N.(其中O為坐標原點)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定一個數(shù)列{an},在這個數(shù)列里,任取m(m≥3,m∈N*)項,并且不改變它們在數(shù)列{an}中的先后次序,得到的數(shù)列{an}的一個m階子數(shù)列.
已知數(shù)列{an}的通項公式為an= (n∈N* , a為常數(shù)),等差數(shù)列a2 , a3 , a6是數(shù)列{an}的一個3子階數(shù)列.
(1)求a的值;
(2)等差數(shù)列b1 , b2 , …,bm是{an}的一個m(m≥3,m∈N*)階子數(shù)列,且b1= (k為常數(shù),k∈N* , k≥2),求證:m≤k+1
(3)等比數(shù)列c1 , c2 , …,cm是{an}的一個m(m≥3,m∈N*)階子數(shù)列,求證:c1+c1+…+cm≤2﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行促銷活動,有兩個摸獎箱,箱內(nèi)有一個“”號球,兩個“”號球,三個“”號球、四個無號球,箱內(nèi)有五個“”號球,五個“”號球,每次摸獎后放回,每位顧客消費額滿元有一次箱內(nèi)摸獎機會,消費額滿元有一次箱內(nèi)摸獎機會,摸得有數(shù)字的球則中獎,“”號球獎元,“”號球獎元,“”號球獎元,摸得無號球則沒有獎金。

(1)經(jīng)統(tǒng)計,顧客消費額服從正態(tài)分布,某天有位顧客,請估計消費額(單位:元)在區(qū)間內(nèi)并中獎的人數(shù).(結(jié)果四舍五入取整數(shù))

附:若,則.

(2)某三位顧客各有一次箱內(nèi)摸獎機會,求其中中獎人數(shù)的分布列.

(3)某顧客消費額為元,有兩種摸獎方法,

方法一:三次箱內(nèi)摸獎機會;

方法二:一次箱內(nèi)摸獎機會.

請問:這位顧客選哪一種方法所得獎金的期望值較大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn= (n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)若bn=anlog3an , 求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電腦公司有6名產(chǎn)品推銷員,其工作年限與推銷金額數(shù)據(jù)如下表:

推銷員編號

1

2

3

4

5

工作年限/年

3

5

6

7

9

推銷金額/萬元

2

3

3

4

5

(1)求年推銷金額關(guān)于工作年限的線性回歸方程;

(2)若第6名推銷員的工作年限為11年,試估計他的年推銷金額.

附:線性回歸方程中,,其中為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx﹣ax,g(x)=ex﹣ax,其中a為實數(shù).
(1)若f(x)在(1,+∞)上是單調(diào)減函數(shù),且g(x)在(1,+∞)上有最小值,求a的取值范圍;
(2)若g(x)在(﹣1,+∞)上是單調(diào)增函數(shù),試求f(x)的零點個數(shù),并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案